Mostrar el registro sencillo del ítem
dc.contributor.author | García-Fernández, Alba | es_ES |
dc.contributor.author | Aznar, Elena | es_ES |
dc.contributor.author | Martínez-Máñez, Ramón | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.date.accessioned | 2020-05-29T03:33:13Z | |
dc.date.available | 2020-05-29T03:33:13Z | |
dc.date.issued | 2020-01-23 | es_ES |
dc.identifier.issn | 1613-6810 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144578 | |
dc.description.abstract | [EN] One appealing concept in the field of hybrid materials is related to the design of gated materials. These materials are prepared in such a way that the release of chemical or biochemical species from voids of porous supports to a solution is triggered upon the application of external stimuli. Such gated materials are mainly composed of two subunits: i) a porous inorganic scaffold in which a cargo is stored, and ii) certain molecular or supramolecular entities, grafted onto the external surface, that can control mass transport from the interior of the pores. On the basis of this concept, a large number of examples are developed in the past ten years. A comprehensive overview of gated materials used in drug delivery applications in in vivo models from 2016 to date is thus given here. | es_ES |
dc.description.sponsorship | The authors thank Spanish Government (Project No. RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE)) and Generalitat Valenciana (PROMETEO2018/024) for their support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Small | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Controlled release | es_ES |
dc.subject | Gated materials | es_ES |
dc.subject | Gating mechanisms | es_ES |
dc.subject | Mesoporous silica nanoparticles | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.title | New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/smll.201902242 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | García-Fernández, A.; Aznar, E.; Martínez-Máñez, R.; Sancenón Galarza, F. (2020). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small. 16(3):1-62. https://doi.org/10.1002/smll.201902242 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/smll.201902242 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 62 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\400742 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Tang, Q., Yu, B., Gao, L., Cong, H., Song, N., & Lu, C. (2018). Stimuli Responsive Nanoparticles for Controlled Anti-cancer Drug Release. Current Medicinal Chemistry, 25(16), 1837-1866. doi:10.2174/0929867325666180111095913 | es_ES |
dc.description.references | Aftab, S., Shah, A., Nadhman, A., Kurbanoglu, S., Aysıl Ozkan, S., Dionysiou, D. D., … Aminabhavi, T. M. (2018). Nanomedicine: An effective tool in cancer therapy. International Journal of Pharmaceutics, 540(1-2), 132-149. doi:10.1016/j.ijpharm.2018.02.007 | es_ES |
dc.description.references | Kozlovskaya, V., Xue, B., & Kharlampieva, E. (2016). Shape-Adaptable Polymeric Particles for Controlled Delivery. Macromolecules, 49(22), 8373-8386. doi:10.1021/acs.macromol.6b01740 | es_ES |
dc.description.references | Mishra, D. K., Shandilya, R., & Mishra, P. K. (2018). Lipid based nanocarriers: a translational perspective. Nanomedicine: Nanotechnology, Biology and Medicine, 14(7), 2023-2050. doi:10.1016/j.nano.2018.05.021 | es_ES |
dc.description.references | Seidi, F., Jenjob, R., Phakkeeree, T., & Crespy, D. (2018). Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. Journal of Controlled Release, 284, 188-212. doi:10.1016/j.jconrel.2018.06.026 | es_ES |
dc.description.references | Chen, W., Zhou, S., Ge, L., Wu, W., & Jiang, X. (2018). Translatable High Drug Loading Drug Delivery Systems Based on Biocompatible Polymer Nanocarriers. Biomacromolecules, 19(6), 1732-1745. doi:10.1021/acs.biomac.8b00218 | es_ES |
dc.description.references | Vázquez-González, M., & Willner, I. (2018). DNA-Responsive SiO2Nanoparticles, Metal–Organic Frameworks, and Microcapsules for Controlled Drug Release. Langmuir, 34(49), 14692-14710. doi:10.1021/acs.langmuir.8b00478 | es_ES |
dc.description.references | Farid, R. M., Youssef, N. A. H. A., & Kassem, A. A. (2018). Platform for Lipid Based Nanocarriers’ Formulation Components and their Potential Effects: A Literature Review. Current Pharmaceutical Design, 23(43), 6613-6629. doi:10.2174/1381612824666171128104814 | es_ES |
dc.description.references | Lombardo, D., Calandra, P., Barreca, D., Magazù, S., & Kiselev, M. (2016). Soft Interaction in Liposome Nanocarriers for Therapeutic Drug Delivery. Nanomaterials, 6(7), 125. doi:10.3390/nano6070125 | es_ES |
dc.description.references | Bansal, A., & Zhang, Y. (2014). Photocontrolled Nanoparticle Delivery Systems for Biomedical Applications. Accounts of Chemical Research, 47(10), 3052-3060. doi:10.1021/ar500217w | es_ES |
dc.description.references | Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 116(4), 2602-2663. doi:10.1021/acs.chemrev.5b00346 | es_ES |
dc.description.references | Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469 | es_ES |
dc.description.references | Yi, S., Zheng, J., Lv, P., Zhang, D., Zheng, X., Zhang, Y., & Liao, R. (2018). Controlled Drug Release from Cyclodextrin-Gated Mesoporous Silica Nanoparticles Based on Switchable Host–Guest Interactions. Bioconjugate Chemistry, 29(9), 2884-2891. doi:10.1021/acs.bioconjchem.8b00416 | es_ES |
dc.description.references | Song, N., & Yang, Y.-W. (2015). Molecular and supramolecular switches on mesoporous silica nanoparticles. Chemical Society Reviews, 44(11), 3474-3504. doi:10.1039/c5cs00243e | es_ES |
dc.description.references | Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t | es_ES |
dc.description.references | Lu, C.-H., & Willner, I. (2015). Stimuli-Responsive DNA-Functionalized Nano-/Microcontainers for Switchable and Controlled Release. Angewandte Chemie International Edition, 54(42), 12212-12235. doi:10.1002/anie.201503054 | es_ES |
dc.description.references | Zhang, Y., Yu, J., Bomba, H. N., Zhu, Y., & Gu, Z. (2016). Mechanical Force-Triggered Drug Delivery. Chemical Reviews, 116(19), 12536-12563. doi:10.1021/acs.chemrev.6b00369 | es_ES |
dc.description.references | Manzano, M., & Vallet-Regí, M. (2019). Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chemical Communications, 55(19), 2731-2740. doi:10.1039/c8cc09389j | es_ES |
dc.description.references | Zhao, T., Chen, L., Li, Q., & Li, X. (2018). Near-infrared light triggered drug release from mesoporous silica nanoparticles. Journal of Materials Chemistry B, 6(44), 7112-7121. doi:10.1039/c8tb01548a | es_ES |
dc.description.references | Yang, P., Gai, S., & Lin, J. (2012). Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews, 41(9), 3679. doi:10.1039/c2cs15308d | es_ES |
dc.description.references | Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 | es_ES |
dc.description.references | Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511 | es_ES |
dc.description.references | Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S.-Y. (2010). Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery. Small, 6(18), 1952-1967. doi:10.1002/smll.200901789 | es_ES |
dc.description.references | Murugan, B., & Krishnan, U. M. (2018). Chemoresponsive smart mesoporous silica systems – An emerging paradigm for cancer therapy. International Journal of Pharmaceutics, 553(1-2), 310-326. doi:10.1016/j.ijpharm.2018.10.026 | es_ES |
dc.description.references | Moreira, A. F., Dias, D. R., & Correia, I. J. (2016). Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review. Microporous and Mesoporous Materials, 236, 141-157. doi:10.1016/j.micromeso.2016.08.038 | es_ES |
dc.description.references | Chen, Y., Chen, H., & Shi, J. (2013). In Vivo Bio-Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles. Advanced Materials, 25(23), 3144-3176. doi:10.1002/adma.201205292 | es_ES |
dc.description.references | Florek, J., Caillard, R., & Kleitz, F. (2017). Evaluation of mesoporous silica nanoparticles for oral drug delivery – current status and perspective of MSNs drug carriers. Nanoscale, 9(40), 15252-15277. doi:10.1039/c7nr05762h | es_ES |
dc.description.references | Bremmell, K. E., & Prestidge, C. A. (2018). Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: opportunities and challenges. Drug Development and Industrial Pharmacy, 45(3), 349-358. doi:10.1080/03639045.2018.1542709 | es_ES |
dc.description.references | Chen, H., Zheng, D., Liu, J., Kuang, Y., Li, Q., Zhang, M., … Jiang, B. (2016). pH-Sensitive drug delivery system based on modified dextrin coated mesoporous silica nanoparticles. International Journal of Biological Macromolecules, 85, 596-603. doi:10.1016/j.ijbiomac.2016.01.038 | es_ES |
dc.description.references | Liu, J., Luo, Z., Zhang, J., Luo, T., Zhou, J., Zhao, X., & Cai, K. (2016). Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials, 83, 51-65. doi:10.1016/j.biomaterials.2016.01.008 | es_ES |
dc.description.references | Li, Z., Zhang, L., Tang, C., & Yin, C. (2017). Co-Delivery of Doxorubicin and Survivin shRNA-Expressing Plasmid Via Microenvironment-Responsive Dendritic Mesoporous Silica Nanoparticles for Synergistic Cancer Therapy. Pharmaceutical Research, 34(12), 2829-2841. doi:10.1007/s11095-017-2264-6 | es_ES |
dc.description.references | Cheng, W., Liang, C., Wang, X., Tsai, H., Liu, G., Peng, Y., … Zeng, X. (2017). A drug-self-gated and tumor microenvironment-responsive mesoporous silica vehicle: «four-in-one» versatile nanomedicine for targeted multidrug-resistant cancer therapy. Nanoscale, 9(43), 17063-17073. doi:10.1039/c7nr05450e | es_ES |
dc.description.references | Zeng, X., Liu, G., Tao, W., Ma, Y., Zhang, X., He, F., … Pan, G. (2017). A Drug-Self-Gated Mesoporous Antitumor Nanoplatform Based on pH-Sensitive Dynamic Covalent Bond. Advanced Functional Materials, 27(11), 1605985. doi:10.1002/adfm.201605985 | es_ES |
dc.description.references | Yang, D., Wang, N., Ji, H., Sun, S., Dong, J., Zhong, Y., … Xu, H. (2018). Preparation of core/shell CdTe@hMSN for enhanced tumor vasculature-specific drug delivery. RSC Advances, 8(68), 38987-38994. doi:10.1039/c8ra07193d | es_ES |
dc.description.references | Li, L., Sun, W., Li, L., Liu, Y., Wu, L., Wang, F., … Huang, Y. (2017). A pH-responsive sequential-disassembly nanohybrid for mitochondrial targeting. Nanoscale, 9(1), 314-325. doi:10.1039/c6nr07004c | es_ES |
dc.description.references | Zhao, R., Li, T., Zheng, G., Jiang, K., Fan, L., & Shao, J. (2017). Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials, 143, 1-16. doi:10.1016/j.biomaterials.2017.07.030 | es_ES |
dc.description.references | Liu, J., Guo, X., Luo, Z., Zhang, J., Li, M., & Cai, K. (2018). Hierarchically stimuli-responsive nanovectors for improved tumor penetration and programed tumor therapy. Nanoscale, 10(28), 13737-13750. doi:10.1039/c8nr02971g | es_ES |
dc.description.references | Fang, J., Zhang, S., Xue, X., Zhu, X., Song, S., Wang, B., … Gao, L. (2018). Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. International Journal of Nanomedicine, Volume 13, 5113-5126. doi:10.2147/ijn.s170862 | es_ES |
dc.description.references | Yang, S., Chen, D., Li, N., Xu, Q., Li, H., Gu, F., … Lu, J. (2015). Hollow Mesoporous Silica Nanocarriers with Multifunctional Capping Agents for In Vivo Cancer Imaging and Therapy. Small, 12(3), 360-370. doi:10.1002/smll.201503121 | es_ES |
dc.description.references | Dai, L., Zhang, Q., Shen, X., Sun, Q., Mu, C., Gu, H., & Cai, K. (2016). A pH-responsive nanocontainer based on hydrazone-bearing hollow silica nanoparticles for targeted tumor therapy. Journal of Materials Chemistry B, 4(26), 4594-4604. doi:10.1039/c6tb01050d | es_ES |
dc.description.references | Nejabat, M., Mohammadi, M., Abnous, K., Taghdisi, S. M., Ramezani, M., & Alibolandi, M. (2018). Fabrication of acetylated carboxymethylcellulose coated hollow mesoporous silica hybrid nanoparticles for nucleolin targeted delivery to colon adenocarcinoma. Carbohydrate Polymers, 197, 157-166. doi:10.1016/j.carbpol.2018.05.092 | es_ES |
dc.description.references | Murugan, C., Rayappan, K., Thangam, R., Bhanumathi, R., Shanthi, K., Vivek, R., … Kannan, S. (2016). Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Scientific Reports, 6(1). doi:10.1038/srep34053 | es_ES |
dc.description.references | Xiao, X., Liu, Y., Guo, M., Fei, W., Zheng, H., Zhang, R., … Li, F. (2016). pH-triggered sustained release of arsenic trioxide by polyacrylic acid capped mesoporous silica nanoparticles for solid tumor treatment in vitro and in vivo. Journal of Biomaterials Applications, 31(1), 23-35. doi:10.1177/0885328216637211 | es_ES |
dc.description.references | Shao, L., Zhang, R., Lu, J., Zhao, C., Deng, X., & Wu, Y. (2017). Mesoporous Silica Coated Polydopamine Functionalized Reduced Graphene Oxide for Synergistic Targeted Chemo-Photothermal Therapy. ACS Applied Materials & Interfaces, 9(2), 1226-1236. doi:10.1021/acsami.6b11209 | es_ES |
dc.description.references | Murugan, C., Venkatesan, S., & Kannan, S. (2017). Cancer Therapeutic Proficiency of Dual-Targeted Mesoporous Silica Nanocomposite Endorses Combination Drug Delivery. ACS Omega, 2(11), 7959-7975. doi:10.1021/acsomega.7b00978 | es_ES |
dc.description.references | Babaei, M., Abnous, K., Taghdisi, S. M., Amel Farzad, S., Peivandi, M. T., Ramezani, M., & Alibolandi, M. (2017). Synthesis of theranostic epithelial cell adhesion molecule targeted mesoporous silica nanoparticle with gold gatekeeper for hepatocellular carcinoma. Nanomedicine, 12(11), 1261-1279. doi:10.2217/nnm-2017-0028 | es_ES |
dc.description.references | Zeiderman, M. R., Morgan, D. E., Christein, J. D., Grizzle, W. E., McMasters, K. M., & McNally, L. R. (2016). Acidic pH-Targeted Chitosan-Capped Mesoporous Silica Coated Gold Nanorods Facilitate Detection of Pancreatic Tumors via Multispectral Optoacoustic Tomography. ACS Biomaterials Science & Engineering, 2(7), 1108-1120. doi:10.1021/acsbiomaterials.6b00111 | es_ES |
dc.description.references | Mu, S., Liu, Y., Wang, T., Zhang, J., Jiang, D., Yu, X., & Zhang, N. (2017). Unsaturated nitrogen-rich polymer poly(l-histidine) gated reversibly switchable mesoporous silica nanoparticles using «graft to» strategy for drug controlled release. Acta Biomaterialia, 63, 150-162. doi:10.1016/j.actbio.2017.08.050 | es_ES |
dc.description.references | He, Y., Su, Z., Xue, L., Xu, H., & Zhang, C. (2016). Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. Journal of Controlled Release, 229, 80-92. doi:10.1016/j.jconrel.2016.03.001 | es_ES |
dc.description.references | Gupta, B., Ruttala, H. B., Poudel, B. K., Pathak, S., Regmi, S., Gautam, M., … Kim, J. O. (2018). Polyamino Acid Layer-by-Layer (LbL) Constructed Silica-Supported Mesoporous Titania Nanocarriers for Stimuli-Responsive Delivery of microRNA 708 and Paclitaxel for Combined Chemotherapy. ACS Applied Materials & Interfaces, 10(29), 24392-24405. doi:10.1021/acsami.8b06642 | es_ES |
dc.description.references | Choi, J. Y., Gupta, B., Ramasamy, T., Jeong, J.-H., Jin, S. G., Choi, H.-G., … Kim, J. O. (2018). PEGylated polyaminoacid-capped mesoporous silica nanoparticles for mitochondria-targeted delivery of celastrol in solid tumors. Colloids and Surfaces B: Biointerfaces, 165, 56-66. doi:10.1016/j.colsurfb.2018.02.015 | es_ES |
dc.description.references | Croissant, J. G., Zhang, D., Alsaiari, S., Lu, J., Deng, L., Tamanoi, F., … Khashab, N. M. (2016). Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. Journal of Controlled Release, 229, 183-191. doi:10.1016/j.jconrel.2016.03.030 | es_ES |
dc.description.references | Wang, X., Niu, D., Hu, C., & Li, P. (2015). Polyethyleneimine-Based Nanocarriers for Gene Delivery. Current Pharmaceutical Design, 21(42), 6140-6156. doi:10.2174/1381612821666151027152907 | es_ES |
dc.description.references | You, Y., Yang, L., He, L., & Chen, T. (2016). Tailored mesoporous silica nanosystem with enhanced permeability of the blood–brain barrier to antagonize glioblastoma. Journal of Materials Chemistry B, 4(36), 5980-5990. doi:10.1039/c6tb01329e | es_ES |
dc.description.references | Gupta, B., Poudel, B. K., Ruttala, H. B., Regmi, S., Pathak, S., Gautam, M., … Kim, J. O. (2018). Hyaluronic acid-capped compact silica-supported mesoporous titania nanoparticles for ligand-directed delivery of doxorubicin. Acta Biomaterialia, 80, 364-377. doi:10.1016/j.actbio.2018.09.006 | es_ES |
dc.description.references | Ma, B., He, L., You, Y., Mo, J., & Chen, T. (2018). Controlled synthesis and size effects of multifunctional mesoporous silica nanosystem for precise cancer therapy. Drug Delivery, 25(1), 293-306. doi:10.1080/10717544.2018.1425779 | es_ES |
dc.description.references | Yin, P. T., Pongkulapa, T., Cho, H.-Y., Han, J., Pasquale, N. J., Rabie, H., … Lee, K.-B. (2018). Overcoming Chemoresistance in Cancer via Combined MicroRNA Therapeutics with Anticancer Drugs Using Multifunctional Magnetic Core–Shell Nanoparticles. ACS Applied Materials & Interfaces, 10(32), 26954-26963. doi:10.1021/acsami.8b09086 | es_ES |
dc.description.references | Mamaeva, V., Niemi, R., Beck, M., Özliseli, E., Desai, D., Landor, S., … Sahlgren, C. (2016). Inhibiting Notch Activity in Breast Cancer Stem Cells by Glucose Functionalized Nanoparticles Carrying γ-secretase Inhibitors. Molecular Therapy, 24(5), 926-936. doi:10.1038/mt.2016.42 | es_ES |
dc.description.references | Shen, J., Liu, H., Mu, C., Wolfram, J., Zhang, W., Kim, H.-C., … Shen, H. (2017). Multi-step encapsulation of chemotherapy and gene silencing agents in functionalized mesoporous silica nanoparticles. Nanoscale, 9(16), 5329-5341. doi:10.1039/c7nr00377c | es_ES |
dc.description.references | Khosraviyan, P., Shafiee Ardestani, M., Khoobi, M., Ostad, S. N., Dorkoosh, F. A., Akbari Javar, H., & Amanlou, M. (2016). Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel. OncoTargets and Therapy, Volume 9, 7315-7330. doi:10.2147/ott.s113815 | es_ES |
dc.description.references | Jin, R., Liu, Z., Bai, Y., Zhou, Y., Gooding, J. J., & Chen, X. (2018). Core-Satellite Mesoporous Silica-Gold Nanotheranostics for Biological Stimuli Triggered Multimodal Cancer Therapy. Advanced Functional Materials, 28(31), 1801961. doi:10.1002/adfm.201801961 | es_ES |
dc.description.references | Ryu, J. H., Messersmith, P. B., & Lee, H. (2018). Polydopamine Surface Chemistry: A Decade of Discovery. ACS Applied Materials & Interfaces, 10(9), 7523-7540. doi:10.1021/acsami.7b19865 | es_ES |
dc.description.references | Liu, Y., Ai, K., & Lu, L. (2014). Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chemical Reviews, 114(9), 5057-5115. doi:10.1021/cr400407a | es_ES |
dc.description.references | Li, Y., Duo, Y., Bi, J., Zeng, X., Mei, L., Bao, S., … Yu, X. (2018). Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. International Journal of Nanomedicine, Volume 13, 1241-1256. doi:10.2147/ijn.s158290 | es_ES |
dc.description.references | Cheng, W., Nie, J., Xu, L., Liang, C., Peng, Y., Liu, G., … Zeng, X. (2017). pH-Sensitive Delivery Vehicle Based on Folic Acid-Conjugated Polydopamine-Modified Mesoporous Silica Nanoparticles for Targeted Cancer Therapy. ACS Applied Materials & Interfaces, 9(22), 18462-18473. doi:10.1021/acsami.7b02457 | es_ES |
dc.description.references | Cheng, W., Liang, C., Xu, L., Liu, G., Gao, N., Tao, W., … Mei, L. (2017). TPGS-Functionalized Polydopamine-Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy against Multidrug Resistance. Small, 13(29), 1700623. doi:10.1002/smll.201700623 | es_ES |
dc.description.references | Duo, Y., Li, Y., Chen, C., Liu, B., Wang, X., Zeng, X., & Chen, H. (2017). DOX-loaded pH-sensitive mesoporous silica nanoparticles coated with PDA and PEG induce pro-death autophagy in breast cancer. RSC Advances, 7(63), 39641-39650. doi:10.1039/c7ra05135b | es_ES |
dc.description.references | Bhagat, P. N., Jadhav, S. H., Chattopadhyay, S., & Paknikar, K. M. (2018). Carbon nanospheres mediated nuclear delivery of SMAR1 protein (DNA binding domain) controls breast tumor in mice model. Nanomedicine, 13(4), 353-372. doi:10.2217/nnm-2017-0298 | es_ES |
dc.description.references | Thiyagarajan, V., Lin, S.-X., Lee, C.-H., & Weng, C.-F. (2016). A focal adhesion kinase inhibitor 16-hydroxy-cleroda-3,13-dien-16,15-olide incorporated into enteric-coated nanoparticles for controlled anti-glioma drug delivery. Colloids and Surfaces B: Biointerfaces, 141, 120-131. doi:10.1016/j.colsurfb.2016.01.038 | es_ES |
dc.description.references | Srivastava, P., Hira, S. K., Srivastava, D. N., Singh, V. K., Gupta, U., Singh, R., … Manna, P. P. (2018). ATP-Decorated Mesoporous Silica for Biomineralization of Calcium Carbonate and P2 Purinergic Receptor-Mediated Antitumor Activity against Aggressive Lymphoma. ACS Applied Materials & Interfaces, 10(8), 6917-6929. doi:10.1021/acsami.7b18729 | es_ES |
dc.description.references | Wang, J., Xu, D., Deng, T., Li, Y., Xue, L., Yan, T., … Deng, D. (2018). Self-Decomposable Mesoporous Doxorubicin@Silica Nanocomposites for Nuclear Targeted Chemo-Photodynamic Combination Therapy. ACS Applied Nano Materials, 1(4), 1976-1984. doi:10.1021/acsanm.8b00486 | es_ES |
dc.description.references | Banala, V. T., Sharma, S., Barnwal, P., Urandur, S., Shukla, R. P., Ahmad, N., … Mishra, P. R. (2018). Synchronized Ratiometric Codelivery of Metformin and Topotecan through Engineered Nanocarrier Facilitates In Vivo Synergistic Precision Levels at Tumor Site. Advanced Healthcare Materials, 7(19), 1800300. doi:10.1002/adhm.201800300 | es_ES |
dc.description.references | Desai, D., Zhang, J., Sandholm, J., Lehtimäki, J., Grönroos, T., Tuomela, J., & Rosenholm, J. M. (2017). Lipid Bilayer-Gated Mesoporous Silica Nanocarriers for Tumor-Targeted Delivery of Zoledronic Acid in Vivo. Molecular Pharmaceutics, 14(9), 3218-3227. doi:10.1021/acs.molpharmaceut.7b00519 | es_ES |
dc.description.references | Xue, H., Yu, Z., Liu, Y., Yuan, W., Yang, T., You, J., … Xu, C. (2017). Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma. International Journal of Nanomedicine, Volume 12, 5271-5287. doi:10.2147/ijn.s135306 | es_ES |
dc.description.references | LaBauve, A. E., Rinker, T. E., Noureddine, A., Serda, R. E., Howe, J. Y., Sherman, M. B., … Negrete, O. A. (2018). Lipid-Coated Mesoporous Silica Nanoparticles for the Delivery of the ML336 Antiviral to Inhibit Encephalitic Alphavirus Infection. Scientific Reports, 8(1). doi:10.1038/s41598-018-32033-w | es_ES |
dc.description.references | Yuan, Z., Wu, W., Zhang, Z., Sun, Z., Cheng, R., Pan, G., … Cui, W. (2017). In situ adjuvant therapy using a responsive doxorubicin-loaded fibrous scaffold after tumor resection. Colloids and Surfaces B: Biointerfaces, 158, 363-369. doi:10.1016/j.colsurfb.2017.06.052 | es_ES |
dc.description.references | Sarkar, A., Ghosh, S., Chowdhury, S., Pandey, B., & Sil, P. C. (2016). Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochimica et Biophysica Acta (BBA) - General Subjects, 1860(10), 2065-2075. doi:10.1016/j.bbagen.2016.07.001 | es_ES |
dc.description.references | Wang, J., Wang, Y., Liu, Q., Yang, L., Zhu, R., Yu, C., & Wang, S. (2016). Rational Design of Multifunctional Dendritic Mesoporous Silica Nanoparticles to Load Curcumin and Enhance Efficacy for Breast Cancer Therapy. ACS Applied Materials & Interfaces, 8(40), 26511-26523. doi:10.1021/acsami.6b08400 | es_ES |
dc.description.references | Lai, C.-Y., Trewyn, B. G., Jeftinija, D. M., Jeftinija, K., Xu, S., Jeftinija, S., & Lin, V. S.-Y. (2003). A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. Journal of the American Chemical Society, 125(15), 4451-4459. doi:10.1021/ja028650l | es_ES |
dc.description.references | Tian, Y., Guo, R., Jiao, Y., Sun, Y., Shen, S., Wang, Y., … Yang, W. (2016). Redox stimuli-responsive hollow mesoporous silica nanocarriers for targeted drug delivery in cancer therapy. Nanoscale Horizons, 1(6), 480-487. doi:10.1039/c6nh00139d | es_ES |
dc.description.references | Liu, H.-J., Luan, X., Feng, H.-Y., Dong, X., Yang, S.-C., Chen, Z.-J., … Fang, C. (2018). Integrated Combination Treatment Using a «Smart» Chemotherapy and MicroRNA Delivery System Improves Outcomes in an Orthotopic Colorectal Cancer Model. Advanced Functional Materials, 28(28), 1801118. doi:10.1002/adfm.201801118 | es_ES |
dc.description.references | Zhao, S., Xu, M., Cao, C., Yu, Q., Zhou, Y., & Liu, J. (2017). A redox-responsive strategy using mesoporous silica nanoparticles for co-delivery of siRNA and doxorubicin. Journal of Materials Chemistry B, 5(33), 6908-6919. doi:10.1039/c7tb00613f | es_ES |
dc.description.references | Chen, Z., Zhu, P., Zhang, Y., Liu, Y., He, Y., Zhang, L., & Gao, Y. (2016). Enhanced Sensitivity of Cancer Stem Cells to Chemotherapy Using Functionalized Mesoporous Silica Nanoparticles. Molecular Pharmaceutics, 13(8), 2749-2759. doi:10.1021/acs.molpharmaceut.6b00352 | es_ES |
dc.description.references | Xie, J., Xiao, D., Zhao, J., Hu, N., Bao, Q., Jiang, L., & Yu, L. (2016). Mesoporous Silica Particles as a Multifunctional Delivery System for Pain Relief in Experimental Neuropathy. Advanced Healthcare Materials, 5(10), 1213-1221. doi:10.1002/adhm.201500996 | es_ES |
dc.description.references | Lu, Y., Yang, Y., Gu, Z., Zhang, J., Song, H., Xiang, G., & Yu, C. (2018). Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and Co-delivery platform for enhanced cancer immunotherapy. Biomaterials, 175, 82-92. doi:10.1016/j.biomaterials.2018.05.025 | es_ES |
dc.description.references | Cheng, X., Li, D., Lin, A., Xu, J., Wu, L., Gu, H., … Yin, X. (2018). Fabrication of multifunctional triple-responsive platform based on CuS-capped periodic mesoporous organosilica nanoparticles for chemo-photothermal therapy. International Journal of Nanomedicine, Volume 13, 3661-3677. doi:10.2147/ijn.s167407 | es_ES |
dc.description.references | Zhou, J., Li, M., Lim, W. Q., Luo, Z., Phua, S. Z. F., Huo, R., … Zhao, Y. (2018). A Transferrin-Conjugated Hollow Nanoplatform for Redox-Controlled and Targeted Chemotherapy of Tumor with Reduced Inflammatory Reactions. Theranostics, 8(2), 518-532. doi:10.7150/thno.21194 | es_ES |
dc.description.references | Wang, Y., Huang, H.-Y., Yang, L., Zhang, Z., & Ji, H. (2016). Cetuximab-modified mesoporous silica nano-medicine specifically targets EGFR-mutant lung cancer and overcomes drug resistance. Scientific Reports, 6(1). doi:10.1038/srep25468 | es_ES |
dc.description.references | Hu, J.-J., Lei, Q., Peng, M.-Y., Zheng, D.-W., Chen, Y.-X., & Zhang, X.-Z. (2017). A positive feedback strategy for enhanced chemotherapy based on ROS-triggered self-accelerating drug release nanosystem. Biomaterials, 128, 136-146. doi:10.1016/j.biomaterials.2017.03.010 | es_ES |
dc.description.references | Shao, D., Li, M., Wang, Z., Zheng, X., Lao, Y.-H., Chang, Z., … Leong, K. W. (2018). Bioinspired Diselenide-Bridged Mesoporous Silica Nanoparticles for Dual-Responsive Protein Delivery. Advanced Materials, 30(29), 1801198. doi:10.1002/adma.201801198 | es_ES |
dc.description.references | Tan, S. Y., Teh, C., Ang, C. Y., Li, M., Li, P., Korzh, V., & Zhao, Y. (2017). Responsive mesoporous silica nanoparticles for sensing of hydrogen peroxide and simultaneous treatment toward heart failure. Nanoscale, 9(6), 2253-2261. doi:10.1039/c6nr08869d | es_ES |
dc.description.references | Ren, S., Yang, J., Ma, L., Li, X., Wu, W., Liu, C., … Miao, L. (2018). Ternary-Responsive Drug Delivery with Activatable Dual Mode Contrast-Enhanced in Vivo Imaging. ACS Applied Materials & Interfaces, 10(38), 31947-31958. doi:10.1021/acsami.8b10564 | es_ES |
dc.description.references | Li, X., Zhao, W., Liu, X., Chen, K., Zhu, S., Shi, P., … Shi, J. (2016). Mesoporous manganese silicate coated silica nanoparticles as multi-stimuli-responsive T1-MRI contrast agents and drug delivery carriers. Acta Biomaterialia, 30, 378-387. doi:10.1016/j.actbio.2015.11.036 | es_ES |
dc.description.references | Yu, L., Chen, Y., Wu, M., Cai, X., Yao, H., Zhang, L., … Shi, J. (2016). «Manganese Extraction» Strategy Enables Tumor-Sensitive Biodegradability and Theranostics of Nanoparticles. Journal of the American Chemical Society, 138(31), 9881-9894. doi:10.1021/jacs.6b04299 | es_ES |
dc.description.references | Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j | es_ES |
dc.description.references | Li, E., Yang, Y., Hao, G., Yi, X., Zhang, S., Pan, Y., … Gao, M. (2018). Multifunctional Magnetic Mesoporous Silica Nanoagents for in vivo Enzyme-Responsive Drug Delivery and MR Imaging. Nanotheranostics, 2(3), 233-242. doi:10.7150/ntno.25565 | es_ES |
dc.description.references | García-Fernández, A., García-Laínez, G., Ferrándiz, M. L., Aznar, E., Sancenón, F., Alcaraz, M. J., … Orzáez, M. (2017). Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release, 248, 60-70. doi:10.1016/j.jconrel.2017.01.002 | es_ES |
dc.description.references | Srivastava, P., Hira, S. K., Srivastava, D. N., Gupta, U., Sen, P., Singh, R. A., & Manna, P. P. (2017). Protease-Responsive Targeted Delivery of Doxorubicin from Bilirubin-BSA-Capped Mesoporous Silica Nanoparticles against Colon Cancer. ACS Biomaterials Science & Engineering, 3(12), 3376-3385. doi:10.1021/acsbiomaterials.7b00635 | es_ES |
dc.description.references | Jiang, H., Shi, X., Yu, X., He, X., An, Y., & Lu, H. (2018). Hyaluronidase Enzyme-responsive Targeted Nanoparticles for Effective Delivery of 5-Fluorouracil in Colon Cancer. Pharmaceutical Research, 35(4). doi:10.1007/s11095-017-2302-4 | es_ES |
dc.description.references | Huang, L., Liu, J., Gao, F., Cheng, Q., Lu, B., Zheng, H., … Zeng, X. (2018). A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy. Journal of Materials Chemistry B, 6(28), 4618-4629. doi:10.1039/c8tb00989a | es_ES |
dc.description.references | Ding, J., Liang, T., Zhou, Y., He, Z., Min, Q., Jiang, L., & Zhu, J. (2016). Hyaluronidase-triggered anticancer drug and siRNA delivery from cascaded targeting nanoparticles for drug-resistant breast cancer therapy. Nano Research, 10(2), 690-703. doi:10.1007/s12274-016-1328-y | es_ES |
dc.description.references | Yang, D., Wang, T., Su, Z., Xue, L., Mo, R., & Zhang, C. (2016). Reversing Cancer Multidrug Resistance in Xenograft Models via Orchestrating Multiple Actions of Functional Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 8(34), 22431-22441. doi:10.1021/acsami.6b04885 | es_ES |
dc.description.references | Ding, Y., Song, Z., Liu, Q., Wei, S., Zhou, L., Zhou, J., & Shen, J. (2017). An enhanced chemotherapeutic effect facilitated by sonication of MSN. Dalton Transactions, 46(35), 11875-11883. doi:10.1039/c7dt02600e | es_ES |
dc.description.references | Zhou, J., Wang, M., Ying, H., Su, D., Zhang, H., Lu, G., & Chen, J. (2018). Extracellular Matrix Component Shelled Nanoparticles as Dual Enzyme-Responsive Drug Delivery Vehicles for Cancer Therapy. ACS Biomaterials Science & Engineering, 4(7), 2404-2411. doi:10.1021/acsbiomaterials.8b00327 | es_ES |
dc.description.references | Yang, Y.-W., Sun, Y.-L., & Song, N. (2014). Switchable Host–Guest Systems on Surfaces. Accounts of Chemical Research, 47(7), 1950-1960. doi:10.1021/ar500022f | es_ES |
dc.description.references | Ambrogio, M. W., Thomas, C. R., Zhao, Y.-L., Zink, J. I., & Stoddart, J. F. (2011). Mechanized Silica Nanoparticles: A New Frontier in Theranostic Nanomedicine. Accounts of Chemical Research, 44(10), 903-913. doi:10.1021/ar200018x | es_ES |
dc.description.references | Gayam, S. R., Venkatesan, P., Sung, Y.-M., Sung, S.-Y., Hu, S.-H., Hsu, H.-Y., & Wu, S.-P. (2016). An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and in vivo. Nanoscale, 8(24), 12307-12317. doi:10.1039/c6nr03525f | es_ES |
dc.description.references | Lee, J., Oh, E.-T., Yoon, H., Woo Kim, C., Han, Y., Song, J., … Kim, C. (2017). Mesoporous nanocarriers with a stimulus-responsive cyclodextrin gatekeeper for targeting tumor hypoxia. Nanoscale, 9(20), 6901-6909. doi:10.1039/c7nr00808b | es_ES |
dc.description.references | Muñoz‐Espín, D., Rovira, M., Galiana, I., Giménez, C., Lozano‐Torres, B., Paez‐Ribes, M., … Serrano, M. (2018). A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine, 10(9). doi:10.15252/emmm.201809355 | es_ES |
dc.description.references | Srivastava, P., Hira, S. K., Sharma, A., Kashif, M., Srivastava, P., Srivastava, D. N., … Manna, P. P. (2018). Telomerase Responsive Delivery of Doxorubicin from Mesoporous Silica Nanoparticles in Multiple Malignancies: Therapeutic Efficacies against Experimental Aggressive Murine Lymphoma. Bioconjugate Chemistry, 29(6), 2107-2119. doi:10.1021/acs.bioconjchem.8b00342 | es_ES |
dc.description.references | Pascual, L., Cerqueira-Coutinho, C., García-Fernández, A., de Luis, B., Bernardes, E. S., Albernaz, M. S., … Sancenón, F. (2017). MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications. Nanomedicine: Nanotechnology, Biology and Medicine, 13(8), 2495-2505. doi:10.1016/j.nano.2017.08.006 | es_ES |
dc.description.references | Yang, S., Han, X., Yang, Y., Qiao, H., Yu, Z., Liu, Y., … Tang, T. (2018). Bacteria-Targeting Nanoparticles with Microenvironment-Responsive Antibiotic Release To Eliminate Intracellular Staphylococcus aureus and Associated Infection. ACS Applied Materials & Interfaces, 10(17), 14299-14311. doi:10.1021/acsami.7b15678 | es_ES |
dc.description.references | Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2018). Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. Journal of Controlled Release, 281, 58-69. doi:10.1016/j.jconrel.2018.05.007 | es_ES |
dc.description.references | Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2019). Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease. Molecular Pharmaceutics, 16(6), 2418-2429. doi:10.1021/acs.molpharmaceut.9b00041 | es_ES |
dc.description.references | Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362 | es_ES |
dc.description.references | Mal, N. K., Fujiwara, M., Tanaka, Y., Taguchi, T., & Matsukata, M. (2003). Photo-Switched Storage and Release of Guest Molecules in the Pore Void of Coumarin-Modified MCM-41. Chemistry of Materials, 15(17), 3385-3394. doi:10.1021/cm0343296 | es_ES |
dc.description.references | An, J., Yang, X.-Q., Cheng, K., Song, X.-L., Zhang, L., Li, C., … Liu, B. (2017). In Vivo Computed Tomography/Photoacoustic Imaging and NIR-Triggered Chemo–Photothermal Combined Therapy Based on a Gold Nanostar-, Mesoporous Silica-, and Thermosensitive Liposome-Composited Nanoprobe. ACS Applied Materials & Interfaces, 9(48), 41748-41759. doi:10.1021/acsami.7b15296 | es_ES |
dc.description.references | Duan, S., Yang, Y., Zhang, C., Zhao, N., & Xu, F.-J. (2016). NIR-Responsive Polycationic Gatekeeper-Cloaked Hetero-Nanoparticles for Multimodal Imaging-Guided Triple-Combination Therapy of Cancer. Small, 13(9), 1603133. doi:10.1002/smll.201603133 | es_ES |
dc.description.references | Chen, X., Zhang, Q., Li, J., Yang, M., Zhao, N., & Xu, F.-J. (2018). Rattle-Structured Rough Nanocapsules with in-Situ-Formed Gold Nanorod Cores for Complementary Gene/Chemo/Photothermal Therapy. ACS Nano, 12(6), 5646-5656. doi:10.1021/acsnano.8b01440 | es_ES |
dc.description.references | Xu, J., Wang, X., Teng, Z., Lu, G., He, N., & Wang, Z. (2018). Multifunctional Yolk–Shell Mesoporous Silica Obtained via Selectively Etching the Shell: A Therapeutic Nanoplatform for Cancer Therapy. ACS Applied Materials & Interfaces, 10(29), 24440-24449. doi:10.1021/acsami.8b08574 | es_ES |
dc.description.references | Zhang, L., Chen, Y., Li, Z., Li, L., Saint-Cricq, P., Li, C., … Zink, J. I. (2016). Tailored Synthesis of Octopus-type Janus Nanoparticles for Synergistic Actively-Targeted and Chemo-Photothermal Therapy. Angewandte Chemie International Edition, 55(6), 2118-2121. doi:10.1002/anie.201510409 | es_ES |
dc.description.references | Han, R.-L., Shi, J.-H., Liu, Z.-J., Hou, Y.-F., & Wang, Y. (2018). Near-Infrared Light-Triggered Hydrophobic-to-Hydrophilic Switch Nanovalve for On-Demand Cancer Therapy. ACS Biomaterials Science & Engineering, 4(10), 3478-3486. doi:10.1021/acsbiomaterials.8b00437 | es_ES |
dc.description.references | Zhang, Y., Ren, K., Zhang, X., Chao, Z., Yang, Y., Ye, D., … Ju, H. (2018). Photo-tearable tape close-wrapped upconversion nanocapsules for near-infrared modulated efficient siRNA delivery and therapy. Biomaterials, 163, 55-66. doi:10.1016/j.biomaterials.2018.02.019 | es_ES |
dc.description.references | Su, J., Sun, H., Meng, Q., Zhang, P., Yin, Q., & Li, Y. (2017). Enhanced Blood Suspensibility and Laser-Activated Tumor-specific Drug Release of Theranostic Mesoporous Silica Nanoparticles by Functionalizing with Erythrocyte Membranes. Theranostics, 7(3), 523-537. doi:10.7150/thno.17259 | es_ES |
dc.description.references | Xuan, M., Shao, J., Zhao, J., Li, Q., Dai, L., & Li, J. (2018). Magnetic Mesoporous Silica Nanoparticles Cloaked by Red Blood Cell Membranes: Applications in Cancer Therapy. Angewandte Chemie International Edition, 57(21), 6049-6053. doi:10.1002/anie.201712996 | es_ES |
dc.description.references | Thapa, R. K., Nguyen, H. T., Gautam, M., Shrestha, A., Lee, E. S., Ku, S. K., … Kim, J. O. (2017). Hydrophobic binding peptide-conjugated hybrid lipid-mesoporous silica nanoparticles for effective chemo-photothermal therapy of pancreatic cancer. Drug Delivery, 24(1), 1690-1702. doi:10.1080/10717544.2017.1396382 | es_ES |
dc.description.references | Li, Z., Zhang, H., Han, J., Chen, Y., Lin, H., & Yang, T. (2018). Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma. Advanced Materials, 30(25), 1706981. doi:10.1002/adma.201706981 | es_ES |
dc.description.references | Lei, Q., Wang, S.-B., Hu, J.-J., Lin, Y.-X., Zhu, C.-H., Rong, L., & Zhang, X.-Z. (2017). Stimuli-Responsive «Cluster Bomb» for Programmed Tumor Therapy. ACS Nano, 11(7), 7201-7214. doi:10.1021/acsnano.7b03088 | es_ES |
dc.description.references | Feng, Y., Li, N., Yin, H., Chen, T., Yang, Q., & Wu, M. (2018). Thermo- and pH-responsive, Lipid-coated, Mesoporous Silica Nanoparticle-based Dual Drug Delivery System To Improve the Antitumor Effect of Hydrophobic Drugs. Molecular Pharmaceutics, 16(1), 422-436. doi:10.1021/acs.molpharmaceut.8b01073 | es_ES |
dc.description.references | Qi, X., Yu, D., Jia, B., Jin, C., Liu, X., Zhao, X., & Zhang, G. (2015). Targeting CD133+ laryngeal carcinoma cells with chemotherapeutic drugs and siRNA against ABCG2 mediated by thermo/pH-sensitive mesoporous silica nanoparticles. Tumor Biology, 37(2), 2209-2217. doi:10.1007/s13277-015-4007-9 | es_ES |
dc.description.references | Liu, X., Yu, D., Jin, C., Song, X., Cheng, J., Zhao, X., … Zhang, G. (2014). A dual responsive targeted drug delivery system based on smart polymer coated mesoporous silica for laryngeal carcinoma treatment. New J. Chem., 38(10), 4830-4836. doi:10.1039/c4nj00579a | es_ES |
dc.description.references | Guisasola, E., Asín, L., Beola, L., de la Fuente, J. M., Baeza, A., & Vallet-Regí, M. (2018). Beyond Traditional Hyperthermia: In Vivo Cancer Treatment with Magnetic-Responsive Mesoporous Silica Nanocarriers. ACS Applied Materials & Interfaces, 10(15), 12518-12525. doi:10.1021/acsami.8b02398 | es_ES |
dc.description.references | Lv, Y., Cao, Y., Li, P., Liu, J., Chen, H., Hu, W., & Zhang, L. (2017). Ultrasound-Triggered Destruction of Folate-Functionalized Mesoporous Silica Nanoparticle-Loaded Microbubble for Targeted Tumor Therapy. Advanced Healthcare Materials, 6(18), 1700354. doi:10.1002/adhm.201700354 | es_ES |
dc.description.references | Wang, J., Jiao, Y., & Shao, Y. (2018). Mesoporous Silica Nanoparticles for Dual-Mode Chemo-Sonodynamic Therapy by Low-Energy Ultrasound. Materials, 11(10), 2041. doi:10.3390/ma11102041 | es_ES |
dc.description.references | Anirudhan, T. S., & Nair, A. S. (2018). Temperature and ultrasound sensitive gatekeepers for the controlled release of chemotherapeutic drugs from mesoporous silica nanoparticles. Journal of Materials Chemistry B, 6(3), 428-439. doi:10.1039/c7tb02292a | es_ES |
dc.description.references | Hou, L., Zheng, Y., Wang, Y., Hu, Y., Shi, J., Liu, Q., … Zhang, Z. (2018). Self-Regulated Carboxyphenylboronic Acid-Modified Mesoporous Silica Nanoparticles with «Touch Switch» Releasing Property for Insulin Delivery. ACS Applied Materials & Interfaces, 10(26), 21927-21938. doi:10.1021/acsami.8b06998 | es_ES |
dc.description.references | Velikova, N., Mas, N., Miguel-Romero, L., Polo, L., Stolte, E., Zaccaria, E., … Wells, J. (2017). Broadening the antibacterial spectrum of histidine kinase autophosphorylation inhibitors via the use of ε-poly-L-lysine capped mesoporous silica-based nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 13(2), 569-581. doi:10.1016/j.nano.2016.09.011 | es_ES |
dc.description.references | Bernardos, A., Piacenza, E., Sancenón, F., Hamidi, M., Maleki, A., Turner, R. J., & Martínez‐Máñez, R. (2019). Mesoporous Silica‐Based Materials with Bactericidal Properties. Small, 15(24), 1900669. doi:10.1002/smll.201900669 | es_ES |
dc.description.references | Jafari, S., Derakhshankhah, H., Alaei, L., Fattahi, A., Varnamkhasti, B. S., & Saboury, A. A. (2019). Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomedicine & Pharmacotherapy, 109, 1100-1111. doi:10.1016/j.biopha.2018.10.167 | es_ES |
dc.description.references | Croissant, J. G., Fatieiev, Y., & Khashab, N. M. (2017). Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Advanced Materials, 29(9), 1604634. doi:10.1002/adma.201604634 | es_ES |
dc.description.references | Lindén, M. (2018). Biodistribution and Excretion of Intravenously Injected Mesoporous Silica Nanoparticles: Implications for Drug Delivery Efficiency and Safety. Mesoporous Silica-based Nanomaterials and Biomedical Applications, Part A, 155-180. doi:10.1016/bs.enz.2018.07.007 | es_ES |
dc.description.references | Xie, J., Lee, S., & Chen, X. (2010). Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 62(11), 1064-1079. doi:10.1016/j.addr.2010.07.009 | es_ES |
dc.description.references | Bunker, B. C. (1994). Molecular mechanisms for corrosion of silica and silicate glasses. Journal of Non-Crystalline Solids, 179, 300-308. doi:10.1016/0022-3093(94)90708-0 | es_ES |
dc.description.references | Popplewell, J. ., King, S. ., Day, J. ., Ackrill, P., Fifield, L. ., Cresswell, R. ., … Liu, K. (1998). Kinetics of uptake and elimination of silicic acid by a human subject: A novel application of 32Si and accelerator mass spectrometry. Journal of Inorganic Biochemistry, 69(3), 177-180. doi:10.1016/s0162-0134(97)10016-2 | es_ES |
dc.description.references | Hao, N., Liu, H., Li, L., Chen, D., Li, L., & Tang, F. (2012). In Vitro Degradation Behavior of Silica Nanoparticles Under Physiological Conditions. Journal of Nanoscience and Nanotechnology, 12(8), 6346-6354. doi:10.1166/jnn.2012.6199 | es_ES |
dc.description.references | NIH U.S. National Library of Medicine ClinicalTrials.gov retrieved fromhttps://clinicaltrials.gov/(accessed: April2019). | es_ES |