- -

New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Fernández, Alba es_ES
dc.contributor.author Aznar, Elena es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.date.accessioned 2020-05-29T03:33:13Z
dc.date.available 2020-05-29T03:33:13Z
dc.date.issued 2020-01-23 es_ES
dc.identifier.issn 1613-6810 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144578
dc.description.abstract [EN] One appealing concept in the field of hybrid materials is related to the design of gated materials. These materials are prepared in such a way that the release of chemical or biochemical species from voids of porous supports to a solution is triggered upon the application of external stimuli. Such gated materials are mainly composed of two subunits: i) a porous inorganic scaffold in which a cargo is stored, and ii) certain molecular or supramolecular entities, grafted onto the external surface, that can control mass transport from the interior of the pores. On the basis of this concept, a large number of examples are developed in the past ten years. A comprehensive overview of gated materials used in drug delivery applications in in vivo models from 2016 to date is thus given here. es_ES
dc.description.sponsorship The authors thank Spanish Government (Project No. RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE)) and Generalitat Valenciana (PROMETEO2018/024) for their support. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Small es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Controlled release es_ES
dc.subject Gated materials es_ES
dc.subject Gating mechanisms es_ES
dc.subject Mesoporous silica nanoparticles es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.title New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/smll.201902242 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation García-Fernández, A.; Aznar, E.; Martínez-Máñez, R.; Sancenón Galarza, F. (2020). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small. 16(3):1-62. https://doi.org/10.1002/smll.201902242 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/smll.201902242 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 62 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\400742 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Tang, Q., Yu, B., Gao, L., Cong, H., Song, N., & Lu, C. (2018). Stimuli Responsive Nanoparticles for Controlled Anti-cancer Drug Release. Current Medicinal Chemistry, 25(16), 1837-1866. doi:10.2174/0929867325666180111095913 es_ES
dc.description.references Aftab, S., Shah, A., Nadhman, A., Kurbanoglu, S., Aysıl Ozkan, S., Dionysiou, D. D., … Aminabhavi, T. M. (2018). Nanomedicine: An effective tool in cancer therapy. International Journal of Pharmaceutics, 540(1-2), 132-149. doi:10.1016/j.ijpharm.2018.02.007 es_ES
dc.description.references Kozlovskaya, V., Xue, B., & Kharlampieva, E. (2016). Shape-Adaptable Polymeric Particles for Controlled Delivery. Macromolecules, 49(22), 8373-8386. doi:10.1021/acs.macromol.6b01740 es_ES
dc.description.references Mishra, D. K., Shandilya, R., & Mishra, P. K. (2018). Lipid based nanocarriers: a translational perspective. Nanomedicine: Nanotechnology, Biology and Medicine, 14(7), 2023-2050. doi:10.1016/j.nano.2018.05.021 es_ES
dc.description.references Seidi, F., Jenjob, R., Phakkeeree, T., & Crespy, D. (2018). Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. Journal of Controlled Release, 284, 188-212. doi:10.1016/j.jconrel.2018.06.026 es_ES
dc.description.references Chen, W., Zhou, S., Ge, L., Wu, W., & Jiang, X. (2018). Translatable High Drug Loading Drug Delivery Systems Based on Biocompatible Polymer Nanocarriers. Biomacromolecules, 19(6), 1732-1745. doi:10.1021/acs.biomac.8b00218 es_ES
dc.description.references Vázquez-González, M., & Willner, I. (2018). DNA-Responsive SiO2Nanoparticles, Metal–Organic Frameworks, and Microcapsules for Controlled Drug Release. Langmuir, 34(49), 14692-14710. doi:10.1021/acs.langmuir.8b00478 es_ES
dc.description.references Farid, R. M., Youssef, N. A. H. A., & Kassem, A. A. (2018). Platform for Lipid Based Nanocarriers’ Formulation Components and their Potential Effects: A Literature Review. Current Pharmaceutical Design, 23(43), 6613-6629. doi:10.2174/1381612824666171128104814 es_ES
dc.description.references Lombardo, D., Calandra, P., Barreca, D., Magazù, S., & Kiselev, M. (2016). Soft Interaction in Liposome Nanocarriers for Therapeutic Drug Delivery. Nanomaterials, 6(7), 125. doi:10.3390/nano6070125 es_ES
dc.description.references Bansal, A., & Zhang, Y. (2014). Photocontrolled Nanoparticle Delivery Systems for Biomedical Applications. Accounts of Chemical Research, 47(10), 3052-3060. doi:10.1021/ar500217w es_ES
dc.description.references Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 116(4), 2602-2663. doi:10.1021/acs.chemrev.5b00346 es_ES
dc.description.references Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469 es_ES
dc.description.references Yi, S., Zheng, J., Lv, P., Zhang, D., Zheng, X., Zhang, Y., & Liao, R. (2018). Controlled Drug Release from Cyclodextrin-Gated Mesoporous Silica Nanoparticles Based on Switchable Host–Guest Interactions. Bioconjugate Chemistry, 29(9), 2884-2891. doi:10.1021/acs.bioconjchem.8b00416 es_ES
dc.description.references Song, N., & Yang, Y.-W. (2015). Molecular and supramolecular switches on mesoporous silica nanoparticles. Chemical Society Reviews, 44(11), 3474-3504. doi:10.1039/c5cs00243e es_ES
dc.description.references Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t es_ES
dc.description.references Lu, C.-H., & Willner, I. (2015). Stimuli-Responsive DNA-Functionalized Nano-/Microcontainers for Switchable and Controlled Release. Angewandte Chemie International Edition, 54(42), 12212-12235. doi:10.1002/anie.201503054 es_ES
dc.description.references Zhang, Y., Yu, J., Bomba, H. N., Zhu, Y., & Gu, Z. (2016). Mechanical Force-Triggered Drug Delivery. Chemical Reviews, 116(19), 12536-12563. doi:10.1021/acs.chemrev.6b00369 es_ES
dc.description.references Manzano, M., & Vallet-Regí, M. (2019). Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chemical Communications, 55(19), 2731-2740. doi:10.1039/c8cc09389j es_ES
dc.description.references Zhao, T., Chen, L., Li, Q., & Li, X. (2018). Near-infrared light triggered drug release from mesoporous silica nanoparticles. Journal of Materials Chemistry B, 6(44), 7112-7121. doi:10.1039/c8tb01548a es_ES
dc.description.references Yang, P., Gai, S., & Lin, J. (2012). Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews, 41(9), 3679. doi:10.1039/c2cs15308d es_ES
dc.description.references Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 es_ES
dc.description.references Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511 es_ES
dc.description.references Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S.-Y. (2010). Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery. Small, 6(18), 1952-1967. doi:10.1002/smll.200901789 es_ES
dc.description.references Murugan, B., & Krishnan, U. M. (2018). Chemoresponsive smart mesoporous silica systems – An emerging paradigm for cancer therapy. International Journal of Pharmaceutics, 553(1-2), 310-326. doi:10.1016/j.ijpharm.2018.10.026 es_ES
dc.description.references Moreira, A. F., Dias, D. R., & Correia, I. J. (2016). Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review. Microporous and Mesoporous Materials, 236, 141-157. doi:10.1016/j.micromeso.2016.08.038 es_ES
dc.description.references Chen, Y., Chen, H., & Shi, J. (2013). In Vivo Bio-Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles. Advanced Materials, 25(23), 3144-3176. doi:10.1002/adma.201205292 es_ES
dc.description.references Florek, J., Caillard, R., & Kleitz, F. (2017). Evaluation of mesoporous silica nanoparticles for oral drug delivery – current status and perspective of MSNs drug carriers. Nanoscale, 9(40), 15252-15277. doi:10.1039/c7nr05762h es_ES
dc.description.references Bremmell, K. E., & Prestidge, C. A. (2018). Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: opportunities and challenges. Drug Development and Industrial Pharmacy, 45(3), 349-358. doi:10.1080/03639045.2018.1542709 es_ES
dc.description.references Chen, H., Zheng, D., Liu, J., Kuang, Y., Li, Q., Zhang, M., … Jiang, B. (2016). pH-Sensitive drug delivery system based on modified dextrin coated mesoporous silica nanoparticles. International Journal of Biological Macromolecules, 85, 596-603. doi:10.1016/j.ijbiomac.2016.01.038 es_ES
dc.description.references Liu, J., Luo, Z., Zhang, J., Luo, T., Zhou, J., Zhao, X., & Cai, K. (2016). Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials, 83, 51-65. doi:10.1016/j.biomaterials.2016.01.008 es_ES
dc.description.references Li, Z., Zhang, L., Tang, C., & Yin, C. (2017). Co-Delivery of Doxorubicin and Survivin shRNA-Expressing Plasmid Via Microenvironment-Responsive Dendritic Mesoporous Silica Nanoparticles for Synergistic Cancer Therapy. Pharmaceutical Research, 34(12), 2829-2841. doi:10.1007/s11095-017-2264-6 es_ES
dc.description.references Cheng, W., Liang, C., Wang, X., Tsai, H., Liu, G., Peng, Y., … Zeng, X. (2017). A drug-self-gated and tumor microenvironment-responsive mesoporous silica vehicle: «four-in-one» versatile nanomedicine for targeted multidrug-resistant cancer therapy. Nanoscale, 9(43), 17063-17073. doi:10.1039/c7nr05450e es_ES
dc.description.references Zeng, X., Liu, G., Tao, W., Ma, Y., Zhang, X., He, F., … Pan, G. (2017). A Drug-Self-Gated Mesoporous Antitumor Nanoplatform Based on pH-Sensitive Dynamic Covalent Bond. Advanced Functional Materials, 27(11), 1605985. doi:10.1002/adfm.201605985 es_ES
dc.description.references Yang, D., Wang, N., Ji, H., Sun, S., Dong, J., Zhong, Y., … Xu, H. (2018). Preparation of core/shell CdTe@hMSN for enhanced tumor vasculature-specific drug delivery. RSC Advances, 8(68), 38987-38994. doi:10.1039/c8ra07193d es_ES
dc.description.references Li, L., Sun, W., Li, L., Liu, Y., Wu, L., Wang, F., … Huang, Y. (2017). A pH-responsive sequential-disassembly nanohybrid for mitochondrial targeting. Nanoscale, 9(1), 314-325. doi:10.1039/c6nr07004c es_ES
dc.description.references Zhao, R., Li, T., Zheng, G., Jiang, K., Fan, L., & Shao, J. (2017). Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials, 143, 1-16. doi:10.1016/j.biomaterials.2017.07.030 es_ES
dc.description.references Liu, J., Guo, X., Luo, Z., Zhang, J., Li, M., & Cai, K. (2018). Hierarchically stimuli-responsive nanovectors for improved tumor penetration and programed tumor therapy. Nanoscale, 10(28), 13737-13750. doi:10.1039/c8nr02971g es_ES
dc.description.references Fang, J., Zhang, S., Xue, X., Zhu, X., Song, S., Wang, B., … Gao, L. (2018). Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. International Journal of Nanomedicine, Volume 13, 5113-5126. doi:10.2147/ijn.s170862 es_ES
dc.description.references Yang, S., Chen, D., Li, N., Xu, Q., Li, H., Gu, F., … Lu, J. (2015). Hollow Mesoporous Silica Nanocarriers with Multifunctional Capping Agents for In Vivo Cancer Imaging and Therapy. Small, 12(3), 360-370. doi:10.1002/smll.201503121 es_ES
dc.description.references Dai, L., Zhang, Q., Shen, X., Sun, Q., Mu, C., Gu, H., & Cai, K. (2016). A pH-responsive nanocontainer based on hydrazone-bearing hollow silica nanoparticles for targeted tumor therapy. Journal of Materials Chemistry B, 4(26), 4594-4604. doi:10.1039/c6tb01050d es_ES
dc.description.references Nejabat, M., Mohammadi, M., Abnous, K., Taghdisi, S. M., Ramezani, M., & Alibolandi, M. (2018). Fabrication of acetylated carboxymethylcellulose coated hollow mesoporous silica hybrid nanoparticles for nucleolin targeted delivery to colon adenocarcinoma. Carbohydrate Polymers, 197, 157-166. doi:10.1016/j.carbpol.2018.05.092 es_ES
dc.description.references Murugan, C., Rayappan, K., Thangam, R., Bhanumathi, R., Shanthi, K., Vivek, R., … Kannan, S. (2016). Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Scientific Reports, 6(1). doi:10.1038/srep34053 es_ES
dc.description.references Xiao, X., Liu, Y., Guo, M., Fei, W., Zheng, H., Zhang, R., … Li, F. (2016). pH-triggered sustained release of arsenic trioxide by polyacrylic acid capped mesoporous silica nanoparticles for solid tumor treatment in vitro and in vivo. Journal of Biomaterials Applications, 31(1), 23-35. doi:10.1177/0885328216637211 es_ES
dc.description.references Shao, L., Zhang, R., Lu, J., Zhao, C., Deng, X., & Wu, Y. (2017). Mesoporous Silica Coated Polydopamine Functionalized Reduced Graphene Oxide for Synergistic Targeted Chemo-Photothermal Therapy. ACS Applied Materials & Interfaces, 9(2), 1226-1236. doi:10.1021/acsami.6b11209 es_ES
dc.description.references Murugan, C., Venkatesan, S., & Kannan, S. (2017). Cancer Therapeutic Proficiency of Dual-Targeted Mesoporous Silica Nanocomposite Endorses Combination Drug Delivery. ACS Omega, 2(11), 7959-7975. doi:10.1021/acsomega.7b00978 es_ES
dc.description.references Babaei, M., Abnous, K., Taghdisi, S. M., Amel Farzad, S., Peivandi, M. T., Ramezani, M., & Alibolandi, M. (2017). Synthesis of theranostic epithelial cell adhesion molecule targeted mesoporous silica nanoparticle with gold gatekeeper for hepatocellular carcinoma. Nanomedicine, 12(11), 1261-1279. doi:10.2217/nnm-2017-0028 es_ES
dc.description.references Zeiderman, M. R., Morgan, D. E., Christein, J. D., Grizzle, W. E., McMasters, K. M., & McNally, L. R. (2016). Acidic pH-Targeted Chitosan-Capped Mesoporous Silica Coated Gold Nanorods Facilitate Detection of Pancreatic Tumors via Multispectral Optoacoustic Tomography. ACS Biomaterials Science & Engineering, 2(7), 1108-1120. doi:10.1021/acsbiomaterials.6b00111 es_ES
dc.description.references Mu, S., Liu, Y., Wang, T., Zhang, J., Jiang, D., Yu, X., & Zhang, N. (2017). Unsaturated nitrogen-rich polymer poly(l-histidine) gated reversibly switchable mesoporous silica nanoparticles using «graft to» strategy for drug controlled release. Acta Biomaterialia, 63, 150-162. doi:10.1016/j.actbio.2017.08.050 es_ES
dc.description.references He, Y., Su, Z., Xue, L., Xu, H., & Zhang, C. (2016). Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. Journal of Controlled Release, 229, 80-92. doi:10.1016/j.jconrel.2016.03.001 es_ES
dc.description.references Gupta, B., Ruttala, H. B., Poudel, B. K., Pathak, S., Regmi, S., Gautam, M., … Kim, J. O. (2018). Polyamino Acid Layer-by-Layer (LbL) Constructed Silica-Supported Mesoporous Titania Nanocarriers for Stimuli-Responsive Delivery of microRNA 708 and Paclitaxel for Combined Chemotherapy. ACS Applied Materials & Interfaces, 10(29), 24392-24405. doi:10.1021/acsami.8b06642 es_ES
dc.description.references Choi, J. Y., Gupta, B., Ramasamy, T., Jeong, J.-H., Jin, S. G., Choi, H.-G., … Kim, J. O. (2018). PEGylated polyaminoacid-capped mesoporous silica nanoparticles for mitochondria-targeted delivery of celastrol in solid tumors. Colloids and Surfaces B: Biointerfaces, 165, 56-66. doi:10.1016/j.colsurfb.2018.02.015 es_ES
dc.description.references Croissant, J. G., Zhang, D., Alsaiari, S., Lu, J., Deng, L., Tamanoi, F., … Khashab, N. M. (2016). Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. Journal of Controlled Release, 229, 183-191. doi:10.1016/j.jconrel.2016.03.030 es_ES
dc.description.references Wang, X., Niu, D., Hu, C., & Li, P. (2015). Polyethyleneimine-Based Nanocarriers for Gene Delivery. Current Pharmaceutical Design, 21(42), 6140-6156. doi:10.2174/1381612821666151027152907 es_ES
dc.description.references You, Y., Yang, L., He, L., & Chen, T. (2016). Tailored mesoporous silica nanosystem with enhanced permeability of the blood–brain barrier to antagonize glioblastoma. Journal of Materials Chemistry B, 4(36), 5980-5990. doi:10.1039/c6tb01329e es_ES
dc.description.references Gupta, B., Poudel, B. K., Ruttala, H. B., Regmi, S., Pathak, S., Gautam, M., … Kim, J. O. (2018). Hyaluronic acid-capped compact silica-supported mesoporous titania nanoparticles for ligand-directed delivery of doxorubicin. Acta Biomaterialia, 80, 364-377. doi:10.1016/j.actbio.2018.09.006 es_ES
dc.description.references Ma, B., He, L., You, Y., Mo, J., & Chen, T. (2018). Controlled synthesis and size effects of multifunctional mesoporous silica nanosystem for precise cancer therapy. Drug Delivery, 25(1), 293-306. doi:10.1080/10717544.2018.1425779 es_ES
dc.description.references Yin, P. T., Pongkulapa, T., Cho, H.-Y., Han, J., Pasquale, N. J., Rabie, H., … Lee, K.-B. (2018). Overcoming Chemoresistance in Cancer via Combined MicroRNA Therapeutics with Anticancer Drugs Using Multifunctional Magnetic Core–Shell Nanoparticles. ACS Applied Materials & Interfaces, 10(32), 26954-26963. doi:10.1021/acsami.8b09086 es_ES
dc.description.references Mamaeva, V., Niemi, R., Beck, M., Özliseli, E., Desai, D., Landor, S., … Sahlgren, C. (2016). Inhibiting Notch Activity in Breast Cancer Stem Cells by Glucose Functionalized Nanoparticles Carrying γ-secretase Inhibitors. Molecular Therapy, 24(5), 926-936. doi:10.1038/mt.2016.42 es_ES
dc.description.references Shen, J., Liu, H., Mu, C., Wolfram, J., Zhang, W., Kim, H.-C., … Shen, H. (2017). Multi-step encapsulation of chemotherapy and gene silencing agents in functionalized mesoporous silica nanoparticles. Nanoscale, 9(16), 5329-5341. doi:10.1039/c7nr00377c es_ES
dc.description.references Khosraviyan, P., Shafiee Ardestani, M., Khoobi, M., Ostad, S. N., Dorkoosh, F. A., Akbari Javar, H., & Amanlou, M. (2016). Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel. OncoTargets and Therapy, Volume 9, 7315-7330. doi:10.2147/ott.s113815 es_ES
dc.description.references Jin, R., Liu, Z., Bai, Y., Zhou, Y., Gooding, J. J., & Chen, X. (2018). Core-Satellite Mesoporous Silica-Gold Nanotheranostics for Biological Stimuli Triggered Multimodal Cancer Therapy. Advanced Functional Materials, 28(31), 1801961. doi:10.1002/adfm.201801961 es_ES
dc.description.references Ryu, J. H., Messersmith, P. B., & Lee, H. (2018). Polydopamine Surface Chemistry: A Decade of Discovery. ACS Applied Materials & Interfaces, 10(9), 7523-7540. doi:10.1021/acsami.7b19865 es_ES
dc.description.references Liu, Y., Ai, K., & Lu, L. (2014). Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chemical Reviews, 114(9), 5057-5115. doi:10.1021/cr400407a es_ES
dc.description.references Li, Y., Duo, Y., Bi, J., Zeng, X., Mei, L., Bao, S., … Yu, X. (2018). Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. International Journal of Nanomedicine, Volume 13, 1241-1256. doi:10.2147/ijn.s158290 es_ES
dc.description.references Cheng, W., Nie, J., Xu, L., Liang, C., Peng, Y., Liu, G., … Zeng, X. (2017). pH-Sensitive Delivery Vehicle Based on Folic Acid-Conjugated Polydopamine-Modified Mesoporous Silica Nanoparticles for Targeted Cancer Therapy. ACS Applied Materials & Interfaces, 9(22), 18462-18473. doi:10.1021/acsami.7b02457 es_ES
dc.description.references Cheng, W., Liang, C., Xu, L., Liu, G., Gao, N., Tao, W., … Mei, L. (2017). TPGS-Functionalized Polydopamine-Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy against Multidrug Resistance. Small, 13(29), 1700623. doi:10.1002/smll.201700623 es_ES
dc.description.references Duo, Y., Li, Y., Chen, C., Liu, B., Wang, X., Zeng, X., & Chen, H. (2017). DOX-loaded pH-sensitive mesoporous silica nanoparticles coated with PDA and PEG induce pro-death autophagy in breast cancer. RSC Advances, 7(63), 39641-39650. doi:10.1039/c7ra05135b es_ES
dc.description.references Bhagat, P. N., Jadhav, S. H., Chattopadhyay, S., & Paknikar, K. M. (2018). Carbon nanospheres mediated nuclear delivery of SMAR1 protein (DNA binding domain) controls breast tumor in mice model. Nanomedicine, 13(4), 353-372. doi:10.2217/nnm-2017-0298 es_ES
dc.description.references Thiyagarajan, V., Lin, S.-X., Lee, C.-H., & Weng, C.-F. (2016). A focal adhesion kinase inhibitor 16-hydroxy-cleroda-3,13-dien-16,15-olide incorporated into enteric-coated nanoparticles for controlled anti-glioma drug delivery. Colloids and Surfaces B: Biointerfaces, 141, 120-131. doi:10.1016/j.colsurfb.2016.01.038 es_ES
dc.description.references Srivastava, P., Hira, S. K., Srivastava, D. N., Singh, V. K., Gupta, U., Singh, R., … Manna, P. P. (2018). ATP-Decorated Mesoporous Silica for Biomineralization of Calcium Carbonate and P2 Purinergic Receptor-Mediated Antitumor Activity against Aggressive Lymphoma. ACS Applied Materials & Interfaces, 10(8), 6917-6929. doi:10.1021/acsami.7b18729 es_ES
dc.description.references Wang, J., Xu, D., Deng, T., Li, Y., Xue, L., Yan, T., … Deng, D. (2018). Self-Decomposable Mesoporous Doxorubicin@Silica Nanocomposites for Nuclear Targeted Chemo-Photodynamic Combination Therapy. ACS Applied Nano Materials, 1(4), 1976-1984. doi:10.1021/acsanm.8b00486 es_ES
dc.description.references Banala, V. T., Sharma, S., Barnwal, P., Urandur, S., Shukla, R. P., Ahmad, N., … Mishra, P. R. (2018). Synchronized Ratiometric Codelivery of Metformin and Topotecan through Engineered Nanocarrier Facilitates In Vivo Synergistic Precision Levels at Tumor Site. Advanced Healthcare Materials, 7(19), 1800300. doi:10.1002/adhm.201800300 es_ES
dc.description.references Desai, D., Zhang, J., Sandholm, J., Lehtimäki, J., Grönroos, T., Tuomela, J., & Rosenholm, J. M. (2017). Lipid Bilayer-Gated Mesoporous Silica Nanocarriers for Tumor-Targeted Delivery of Zoledronic Acid in Vivo. Molecular Pharmaceutics, 14(9), 3218-3227. doi:10.1021/acs.molpharmaceut.7b00519 es_ES
dc.description.references Xue, H., Yu, Z., Liu, Y., Yuan, W., Yang, T., You, J., … Xu, C. (2017). Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma. International Journal of Nanomedicine, Volume 12, 5271-5287. doi:10.2147/ijn.s135306 es_ES
dc.description.references LaBauve, A. E., Rinker, T. E., Noureddine, A., Serda, R. E., Howe, J. Y., Sherman, M. B., … Negrete, O. A. (2018). Lipid-Coated Mesoporous Silica Nanoparticles for the Delivery of the ML336 Antiviral to Inhibit Encephalitic Alphavirus Infection. Scientific Reports, 8(1). doi:10.1038/s41598-018-32033-w es_ES
dc.description.references Yuan, Z., Wu, W., Zhang, Z., Sun, Z., Cheng, R., Pan, G., … Cui, W. (2017). In situ adjuvant therapy using a responsive doxorubicin-loaded fibrous scaffold after tumor resection. Colloids and Surfaces B: Biointerfaces, 158, 363-369. doi:10.1016/j.colsurfb.2017.06.052 es_ES
dc.description.references Sarkar, A., Ghosh, S., Chowdhury, S., Pandey, B., & Sil, P. C. (2016). Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochimica et Biophysica Acta (BBA) - General Subjects, 1860(10), 2065-2075. doi:10.1016/j.bbagen.2016.07.001 es_ES
dc.description.references Wang, J., Wang, Y., Liu, Q., Yang, L., Zhu, R., Yu, C., & Wang, S. (2016). Rational Design of Multifunctional Dendritic Mesoporous Silica Nanoparticles to Load Curcumin and Enhance Efficacy for Breast Cancer Therapy. ACS Applied Materials & Interfaces, 8(40), 26511-26523. doi:10.1021/acsami.6b08400 es_ES
dc.description.references Lai, C.-Y., Trewyn, B. G., Jeftinija, D. M., Jeftinija, K., Xu, S., Jeftinija, S., & Lin, V. S.-Y. (2003). A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. Journal of the American Chemical Society, 125(15), 4451-4459. doi:10.1021/ja028650l es_ES
dc.description.references Tian, Y., Guo, R., Jiao, Y., Sun, Y., Shen, S., Wang, Y., … Yang, W. (2016). Redox stimuli-responsive hollow mesoporous silica nanocarriers for targeted drug delivery in cancer therapy. Nanoscale Horizons, 1(6), 480-487. doi:10.1039/c6nh00139d es_ES
dc.description.references Liu, H.-J., Luan, X., Feng, H.-Y., Dong, X., Yang, S.-C., Chen, Z.-J., … Fang, C. (2018). Integrated Combination Treatment Using a «Smart» Chemotherapy and MicroRNA Delivery System Improves Outcomes in an Orthotopic Colorectal Cancer Model. Advanced Functional Materials, 28(28), 1801118. doi:10.1002/adfm.201801118 es_ES
dc.description.references Zhao, S., Xu, M., Cao, C., Yu, Q., Zhou, Y., & Liu, J. (2017). A redox-responsive strategy using mesoporous silica nanoparticles for co-delivery of siRNA and doxorubicin. Journal of Materials Chemistry B, 5(33), 6908-6919. doi:10.1039/c7tb00613f es_ES
dc.description.references Chen, Z., Zhu, P., Zhang, Y., Liu, Y., He, Y., Zhang, L., & Gao, Y. (2016). Enhanced Sensitivity of Cancer Stem Cells to Chemotherapy Using Functionalized Mesoporous Silica Nanoparticles. Molecular Pharmaceutics, 13(8), 2749-2759. doi:10.1021/acs.molpharmaceut.6b00352 es_ES
dc.description.references Xie, J., Xiao, D., Zhao, J., Hu, N., Bao, Q., Jiang, L., & Yu, L. (2016). Mesoporous Silica Particles as a Multifunctional Delivery System for Pain Relief in Experimental Neuropathy. Advanced Healthcare Materials, 5(10), 1213-1221. doi:10.1002/adhm.201500996 es_ES
dc.description.references Lu, Y., Yang, Y., Gu, Z., Zhang, J., Song, H., Xiang, G., & Yu, C. (2018). Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and Co-delivery platform for enhanced cancer immunotherapy. Biomaterials, 175, 82-92. doi:10.1016/j.biomaterials.2018.05.025 es_ES
dc.description.references Cheng, X., Li, D., Lin, A., Xu, J., Wu, L., Gu, H., … Yin, X. (2018). Fabrication of multifunctional triple-responsive platform based on CuS-capped periodic mesoporous organosilica nanoparticles for chemo-photothermal therapy. International Journal of Nanomedicine, Volume 13, 3661-3677. doi:10.2147/ijn.s167407 es_ES
dc.description.references Zhou, J., Li, M., Lim, W. Q., Luo, Z., Phua, S. Z. F., Huo, R., … Zhao, Y. (2018). A Transferrin-Conjugated Hollow Nanoplatform for Redox-Controlled and Targeted Chemotherapy of Tumor with Reduced Inflammatory Reactions. Theranostics, 8(2), 518-532. doi:10.7150/thno.21194 es_ES
dc.description.references Wang, Y., Huang, H.-Y., Yang, L., Zhang, Z., & Ji, H. (2016). Cetuximab-modified mesoporous silica nano-medicine specifically targets EGFR-mutant lung cancer and overcomes drug resistance. Scientific Reports, 6(1). doi:10.1038/srep25468 es_ES
dc.description.references Hu, J.-J., Lei, Q., Peng, M.-Y., Zheng, D.-W., Chen, Y.-X., & Zhang, X.-Z. (2017). A positive feedback strategy for enhanced chemotherapy based on ROS-triggered self-accelerating drug release nanosystem. Biomaterials, 128, 136-146. doi:10.1016/j.biomaterials.2017.03.010 es_ES
dc.description.references Shao, D., Li, M., Wang, Z., Zheng, X., Lao, Y.-H., Chang, Z., … Leong, K. W. (2018). Bioinspired Diselenide-Bridged Mesoporous Silica Nanoparticles for Dual-Responsive Protein Delivery. Advanced Materials, 30(29), 1801198. doi:10.1002/adma.201801198 es_ES
dc.description.references Tan, S. Y., Teh, C., Ang, C. Y., Li, M., Li, P., Korzh, V., & Zhao, Y. (2017). Responsive mesoporous silica nanoparticles for sensing of hydrogen peroxide and simultaneous treatment toward heart failure. Nanoscale, 9(6), 2253-2261. doi:10.1039/c6nr08869d es_ES
dc.description.references Ren, S., Yang, J., Ma, L., Li, X., Wu, W., Liu, C., … Miao, L. (2018). Ternary-Responsive Drug Delivery with Activatable Dual Mode Contrast-Enhanced in Vivo Imaging. ACS Applied Materials & Interfaces, 10(38), 31947-31958. doi:10.1021/acsami.8b10564 es_ES
dc.description.references Li, X., Zhao, W., Liu, X., Chen, K., Zhu, S., Shi, P., … Shi, J. (2016). Mesoporous manganese silicate coated silica nanoparticles as multi-stimuli-responsive T1-MRI contrast agents and drug delivery carriers. Acta Biomaterialia, 30, 378-387. doi:10.1016/j.actbio.2015.11.036 es_ES
dc.description.references Yu, L., Chen, Y., Wu, M., Cai, X., Yao, H., Zhang, L., … Shi, J. (2016). «Manganese Extraction» Strategy Enables Tumor-Sensitive Biodegradability and Theranostics of Nanoparticles. Journal of the American Chemical Society, 138(31), 9881-9894. doi:10.1021/jacs.6b04299 es_ES
dc.description.references Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j es_ES
dc.description.references Li, E., Yang, Y., Hao, G., Yi, X., Zhang, S., Pan, Y., … Gao, M. (2018). Multifunctional Magnetic Mesoporous Silica Nanoagents for in vivo Enzyme-Responsive Drug Delivery and MR Imaging. Nanotheranostics, 2(3), 233-242. doi:10.7150/ntno.25565 es_ES
dc.description.references García-Fernández, A., García-Laínez, G., Ferrándiz, M. L., Aznar, E., Sancenón, F., Alcaraz, M. J., … Orzáez, M. (2017). Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release, 248, 60-70. doi:10.1016/j.jconrel.2017.01.002 es_ES
dc.description.references Srivastava, P., Hira, S. K., Srivastava, D. N., Gupta, U., Sen, P., Singh, R. A., & Manna, P. P. (2017). Protease-Responsive Targeted Delivery of Doxorubicin from Bilirubin-BSA-Capped Mesoporous Silica Nanoparticles against Colon Cancer. ACS Biomaterials Science & Engineering, 3(12), 3376-3385. doi:10.1021/acsbiomaterials.7b00635 es_ES
dc.description.references Jiang, H., Shi, X., Yu, X., He, X., An, Y., & Lu, H. (2018). Hyaluronidase Enzyme-responsive Targeted Nanoparticles for Effective Delivery of 5-Fluorouracil in Colon Cancer. Pharmaceutical Research, 35(4). doi:10.1007/s11095-017-2302-4 es_ES
dc.description.references Huang, L., Liu, J., Gao, F., Cheng, Q., Lu, B., Zheng, H., … Zeng, X. (2018). A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy. Journal of Materials Chemistry B, 6(28), 4618-4629. doi:10.1039/c8tb00989a es_ES
dc.description.references Ding, J., Liang, T., Zhou, Y., He, Z., Min, Q., Jiang, L., & Zhu, J. (2016). Hyaluronidase-triggered anticancer drug and siRNA delivery from cascaded targeting nanoparticles for drug-resistant breast cancer therapy. Nano Research, 10(2), 690-703. doi:10.1007/s12274-016-1328-y es_ES
dc.description.references Yang, D., Wang, T., Su, Z., Xue, L., Mo, R., & Zhang, C. (2016). Reversing Cancer Multidrug Resistance in Xenograft Models via Orchestrating Multiple Actions of Functional Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 8(34), 22431-22441. doi:10.1021/acsami.6b04885 es_ES
dc.description.references Ding, Y., Song, Z., Liu, Q., Wei, S., Zhou, L., Zhou, J., & Shen, J. (2017). An enhanced chemotherapeutic effect facilitated by sonication of MSN. Dalton Transactions, 46(35), 11875-11883. doi:10.1039/c7dt02600e es_ES
dc.description.references Zhou, J., Wang, M., Ying, H., Su, D., Zhang, H., Lu, G., & Chen, J. (2018). Extracellular Matrix Component Shelled Nanoparticles as Dual Enzyme-Responsive Drug Delivery Vehicles for Cancer Therapy. ACS Biomaterials Science & Engineering, 4(7), 2404-2411. doi:10.1021/acsbiomaterials.8b00327 es_ES
dc.description.references Yang, Y.-W., Sun, Y.-L., & Song, N. (2014). Switchable Host–Guest Systems on Surfaces. Accounts of Chemical Research, 47(7), 1950-1960. doi:10.1021/ar500022f es_ES
dc.description.references Ambrogio, M. W., Thomas, C. R., Zhao, Y.-L., Zink, J. I., & Stoddart, J. F. (2011). Mechanized Silica Nanoparticles: A New Frontier in Theranostic Nanomedicine. Accounts of Chemical Research, 44(10), 903-913. doi:10.1021/ar200018x es_ES
dc.description.references Gayam, S. R., Venkatesan, P., Sung, Y.-M., Sung, S.-Y., Hu, S.-H., Hsu, H.-Y., & Wu, S.-P. (2016). An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and in vivo. Nanoscale, 8(24), 12307-12317. doi:10.1039/c6nr03525f es_ES
dc.description.references Lee, J., Oh, E.-T., Yoon, H., Woo Kim, C., Han, Y., Song, J., … Kim, C. (2017). Mesoporous nanocarriers with a stimulus-responsive cyclodextrin gatekeeper for targeting tumor hypoxia. Nanoscale, 9(20), 6901-6909. doi:10.1039/c7nr00808b es_ES
dc.description.references Muñoz‐Espín, D., Rovira, M., Galiana, I., Giménez, C., Lozano‐Torres, B., Paez‐Ribes, M., … Serrano, M. (2018). A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine, 10(9). doi:10.15252/emmm.201809355 es_ES
dc.description.references Srivastava, P., Hira, S. K., Sharma, A., Kashif, M., Srivastava, P., Srivastava, D. N., … Manna, P. P. (2018). Telomerase Responsive Delivery of Doxorubicin from Mesoporous Silica Nanoparticles in Multiple Malignancies: Therapeutic Efficacies against Experimental Aggressive Murine Lymphoma. Bioconjugate Chemistry, 29(6), 2107-2119. doi:10.1021/acs.bioconjchem.8b00342 es_ES
dc.description.references Pascual, L., Cerqueira-Coutinho, C., García-Fernández, A., de Luis, B., Bernardes, E. S., Albernaz, M. S., … Sancenón, F. (2017). MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications. Nanomedicine: Nanotechnology, Biology and Medicine, 13(8), 2495-2505. doi:10.1016/j.nano.2017.08.006 es_ES
dc.description.references Yang, S., Han, X., Yang, Y., Qiao, H., Yu, Z., Liu, Y., … Tang, T. (2018). Bacteria-Targeting Nanoparticles with Microenvironment-Responsive Antibiotic Release To Eliminate Intracellular Staphylococcus aureus and Associated Infection. ACS Applied Materials & Interfaces, 10(17), 14299-14311. doi:10.1021/acsami.7b15678 es_ES
dc.description.references Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2018). Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. Journal of Controlled Release, 281, 58-69. doi:10.1016/j.jconrel.2018.05.007 es_ES
dc.description.references Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2019). Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease. Molecular Pharmaceutics, 16(6), 2418-2429. doi:10.1021/acs.molpharmaceut.9b00041 es_ES
dc.description.references Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362 es_ES
dc.description.references Mal, N. K., Fujiwara, M., Tanaka, Y., Taguchi, T., & Matsukata, M. (2003). Photo-Switched Storage and Release of Guest Molecules in the Pore Void of Coumarin-Modified MCM-41. Chemistry of Materials, 15(17), 3385-3394. doi:10.1021/cm0343296 es_ES
dc.description.references An, J., Yang, X.-Q., Cheng, K., Song, X.-L., Zhang, L., Li, C., … Liu, B. (2017). In Vivo Computed Tomography/Photoacoustic Imaging and NIR-Triggered Chemo–Photothermal Combined Therapy Based on a Gold Nanostar-, Mesoporous Silica-, and Thermosensitive Liposome-Composited Nanoprobe. ACS Applied Materials & Interfaces, 9(48), 41748-41759. doi:10.1021/acsami.7b15296 es_ES
dc.description.references Duan, S., Yang, Y., Zhang, C., Zhao, N., & Xu, F.-J. (2016). NIR-Responsive Polycationic Gatekeeper-Cloaked Hetero-Nanoparticles for Multimodal Imaging-Guided Triple-Combination Therapy of Cancer. Small, 13(9), 1603133. doi:10.1002/smll.201603133 es_ES
dc.description.references Chen, X., Zhang, Q., Li, J., Yang, M., Zhao, N., & Xu, F.-J. (2018). Rattle-Structured Rough Nanocapsules with in-Situ-Formed Gold Nanorod Cores for Complementary Gene/Chemo/Photothermal Therapy. ACS Nano, 12(6), 5646-5656. doi:10.1021/acsnano.8b01440 es_ES
dc.description.references Xu, J., Wang, X., Teng, Z., Lu, G., He, N., & Wang, Z. (2018). Multifunctional Yolk–Shell Mesoporous Silica Obtained via Selectively Etching the Shell: A Therapeutic Nanoplatform for Cancer Therapy. ACS Applied Materials & Interfaces, 10(29), 24440-24449. doi:10.1021/acsami.8b08574 es_ES
dc.description.references Zhang, L., Chen, Y., Li, Z., Li, L., Saint-Cricq, P., Li, C., … Zink, J. I. (2016). Tailored Synthesis of Octopus-type Janus Nanoparticles for Synergistic Actively-Targeted and Chemo-Photothermal Therapy. Angewandte Chemie International Edition, 55(6), 2118-2121. doi:10.1002/anie.201510409 es_ES
dc.description.references Han, R.-L., Shi, J.-H., Liu, Z.-J., Hou, Y.-F., & Wang, Y. (2018). Near-Infrared Light-Triggered Hydrophobic-to-Hydrophilic Switch Nanovalve for On-Demand Cancer Therapy. ACS Biomaterials Science & Engineering, 4(10), 3478-3486. doi:10.1021/acsbiomaterials.8b00437 es_ES
dc.description.references Zhang, Y., Ren, K., Zhang, X., Chao, Z., Yang, Y., Ye, D., … Ju, H. (2018). Photo-tearable tape close-wrapped upconversion nanocapsules for near-infrared modulated efficient siRNA delivery and therapy. Biomaterials, 163, 55-66. doi:10.1016/j.biomaterials.2018.02.019 es_ES
dc.description.references Su, J., Sun, H., Meng, Q., Zhang, P., Yin, Q., & Li, Y. (2017). Enhanced Blood Suspensibility and Laser-Activated Tumor-specific Drug Release of Theranostic Mesoporous Silica Nanoparticles by Functionalizing with Erythrocyte Membranes. Theranostics, 7(3), 523-537. doi:10.7150/thno.17259 es_ES
dc.description.references Xuan, M., Shao, J., Zhao, J., Li, Q., Dai, L., & Li, J. (2018). Magnetic Mesoporous Silica Nanoparticles Cloaked by Red Blood Cell Membranes: Applications in Cancer Therapy. Angewandte Chemie International Edition, 57(21), 6049-6053. doi:10.1002/anie.201712996 es_ES
dc.description.references Thapa, R. K., Nguyen, H. T., Gautam, M., Shrestha, A., Lee, E. S., Ku, S. K., … Kim, J. O. (2017). Hydrophobic binding peptide-conjugated hybrid lipid-mesoporous silica nanoparticles for effective chemo-photothermal therapy of pancreatic cancer. Drug Delivery, 24(1), 1690-1702. doi:10.1080/10717544.2017.1396382 es_ES
dc.description.references Li, Z., Zhang, H., Han, J., Chen, Y., Lin, H., & Yang, T. (2018). Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma. Advanced Materials, 30(25), 1706981. doi:10.1002/adma.201706981 es_ES
dc.description.references Lei, Q., Wang, S.-B., Hu, J.-J., Lin, Y.-X., Zhu, C.-H., Rong, L., & Zhang, X.-Z. (2017). Stimuli-Responsive «Cluster Bomb» for Programmed Tumor Therapy. ACS Nano, 11(7), 7201-7214. doi:10.1021/acsnano.7b03088 es_ES
dc.description.references Feng, Y., Li, N., Yin, H., Chen, T., Yang, Q., & Wu, M. (2018). Thermo- and pH-responsive, Lipid-coated, Mesoporous Silica Nanoparticle-based Dual Drug Delivery System To Improve the Antitumor Effect of Hydrophobic Drugs. Molecular Pharmaceutics, 16(1), 422-436. doi:10.1021/acs.molpharmaceut.8b01073 es_ES
dc.description.references Qi, X., Yu, D., Jia, B., Jin, C., Liu, X., Zhao, X., & Zhang, G. (2015). Targeting CD133+ laryngeal carcinoma cells with chemotherapeutic drugs and siRNA against ABCG2 mediated by thermo/pH-sensitive mesoporous silica nanoparticles. Tumor Biology, 37(2), 2209-2217. doi:10.1007/s13277-015-4007-9 es_ES
dc.description.references Liu, X., Yu, D., Jin, C., Song, X., Cheng, J., Zhao, X., … Zhang, G. (2014). A dual responsive targeted drug delivery system based on smart polymer coated mesoporous silica for laryngeal carcinoma treatment. New J. Chem., 38(10), 4830-4836. doi:10.1039/c4nj00579a es_ES
dc.description.references Guisasola, E., Asín, L., Beola, L., de la Fuente, J. M., Baeza, A., & Vallet-Regí, M. (2018). Beyond Traditional Hyperthermia: In Vivo Cancer Treatment with Magnetic-Responsive Mesoporous Silica Nanocarriers. ACS Applied Materials & Interfaces, 10(15), 12518-12525. doi:10.1021/acsami.8b02398 es_ES
dc.description.references Lv, Y., Cao, Y., Li, P., Liu, J., Chen, H., Hu, W., & Zhang, L. (2017). Ultrasound-Triggered Destruction of Folate-Functionalized Mesoporous Silica Nanoparticle-Loaded Microbubble for Targeted Tumor Therapy. Advanced Healthcare Materials, 6(18), 1700354. doi:10.1002/adhm.201700354 es_ES
dc.description.references Wang, J., Jiao, Y., & Shao, Y. (2018). Mesoporous Silica Nanoparticles for Dual-Mode Chemo-Sonodynamic Therapy by Low-Energy Ultrasound. Materials, 11(10), 2041. doi:10.3390/ma11102041 es_ES
dc.description.references Anirudhan, T. S., & Nair, A. S. (2018). Temperature and ultrasound sensitive gatekeepers for the controlled release of chemotherapeutic drugs from mesoporous silica nanoparticles. Journal of Materials Chemistry B, 6(3), 428-439. doi:10.1039/c7tb02292a es_ES
dc.description.references Hou, L., Zheng, Y., Wang, Y., Hu, Y., Shi, J., Liu, Q., … Zhang, Z. (2018). Self-Regulated Carboxyphenylboronic Acid-Modified Mesoporous Silica Nanoparticles with «Touch Switch» Releasing Property for Insulin Delivery. ACS Applied Materials & Interfaces, 10(26), 21927-21938. doi:10.1021/acsami.8b06998 es_ES
dc.description.references Velikova, N., Mas, N., Miguel-Romero, L., Polo, L., Stolte, E., Zaccaria, E., … Wells, J. (2017). Broadening the antibacterial spectrum of histidine kinase autophosphorylation inhibitors via the use of ε-poly-L-lysine capped mesoporous silica-based nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 13(2), 569-581. doi:10.1016/j.nano.2016.09.011 es_ES
dc.description.references Bernardos, A., Piacenza, E., Sancenón, F., Hamidi, M., Maleki, A., Turner, R. J., & Martínez‐Máñez, R. (2019). Mesoporous Silica‐Based Materials with Bactericidal Properties. Small, 15(24), 1900669. doi:10.1002/smll.201900669 es_ES
dc.description.references Jafari, S., Derakhshankhah, H., Alaei, L., Fattahi, A., Varnamkhasti, B. S., & Saboury, A. A. (2019). Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomedicine & Pharmacotherapy, 109, 1100-1111. doi:10.1016/j.biopha.2018.10.167 es_ES
dc.description.references Croissant, J. G., Fatieiev, Y., & Khashab, N. M. (2017). Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Advanced Materials, 29(9), 1604634. doi:10.1002/adma.201604634 es_ES
dc.description.references Lindén, M. (2018). Biodistribution and Excretion of Intravenously Injected Mesoporous Silica Nanoparticles: Implications for Drug Delivery Efficiency and Safety. Mesoporous Silica-based Nanomaterials and Biomedical Applications, Part A, 155-180. doi:10.1016/bs.enz.2018.07.007 es_ES
dc.description.references Xie, J., Lee, S., & Chen, X. (2010). Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 62(11), 1064-1079. doi:10.1016/j.addr.2010.07.009 es_ES
dc.description.references Bunker, B. C. (1994). Molecular mechanisms for corrosion of silica and silicate glasses. Journal of Non-Crystalline Solids, 179, 300-308. doi:10.1016/0022-3093(94)90708-0 es_ES
dc.description.references Popplewell, J. ., King, S. ., Day, J. ., Ackrill, P., Fifield, L. ., Cresswell, R. ., … Liu, K. (1998). Kinetics of uptake and elimination of silicic acid by a human subject: A novel application of 32Si and accelerator mass spectrometry. Journal of Inorganic Biochemistry, 69(3), 177-180. doi:10.1016/s0162-0134(97)10016-2 es_ES
dc.description.references Hao, N., Liu, H., Li, L., Chen, D., Li, L., & Tang, F. (2012). In Vitro Degradation Behavior of Silica Nanoparticles Under Physiological Conditions. Journal of Nanoscience and Nanotechnology, 12(8), 6346-6354. doi:10.1166/jnn.2012.6199 es_ES
dc.description.references NIH U.S. National Library of Medicine ClinicalTrials.gov retrieved fromhttps://clinicaltrials.gov/(accessed: April2019). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem