- -

Efficient temperature field evaluation in wet surface grinding for arbitrary heat flux profile

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Efficient temperature field evaluation in wet surface grinding for arbitrary heat flux profile

Show full item record

González-Santander Martínez, JL.; Monreal Mengual, L. (2019). Efficient temperature field evaluation in wet surface grinding for arbitrary heat flux profile. Journal of Engineering Mathematics. 116(1):101-122. https://doi.org/10.1007/s10665-019-10004-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144581

Files in this item

Item Metadata

Title: Efficient temperature field evaluation in wet surface grinding for arbitrary heat flux profile
Author: González-Santander Martínez, Juan Luis Monreal Mengual, Llucía
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] We consider the heat transfer in surface wet grinding, assuming a constant heat-transfer coefficient over the workpiece surface, as well as the usual heat flux profiles entering into the workpiece given in the literature, ...[+]
Subjects: Convergence acceleration , Heat transfer in grinding , Maximum temperature in grinding , Wet grinding
Copyrigths: Cerrado
Source:
Journal of Engineering Mathematics. (issn: 0022-0833 )
DOI: 10.1007/s10665-019-10004-y
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s10665-019-10004-y
Type: Artículo

References

Malkin S, Guo C (2008) Grinding technology: theory and application of machining with abrasives. Industrial Press Inc., New York

Guo C, Malkin S (1995) Analysis of energy partition in grinding. J Eng Ind 117(1):55

Malkin S, Anderson R (1974) Thermal aspects of grinding: part 1 energy partition. J Eng Ind 96(4):1177 [+]
Malkin S, Guo C (2008) Grinding technology: theory and application of machining with abrasives. Industrial Press Inc., New York

Guo C, Malkin S (1995) Analysis of energy partition in grinding. J Eng Ind 117(1):55

Malkin S, Anderson R (1974) Thermal aspects of grinding: part 1 energy partition. J Eng Ind 96(4):1177

Lavine A, von Turkovich B (1991) Thermal aspects of grinding: the effect of heat generation at the shear planes. CIRP Ann Manuf Technol 40(1):343

Lavine A (2000) An exact solution for surface temperature in down grinding. Int J Heat Mass Transf 43(24):4447

Jaeger J (1942) Moving sources of heat and the temperature of sliding contacts. Proc R Soc NSW 76(76):203–224

DesRuisseaux N, Zerkle R (1970) Temperature in semi-infinite and cylindrical bodies subjected to moving heat sources and surface cooling. J Heat Transf 92(3):456

Jaeger J, Carslaw H (1988) Conduction of heat in solids. Clarendon, Oxford

Lavine A, Malkin S, Jen T (1989) Thermal aspects of grinding with CBN wheels. CIRP Ann Manuf Technol 38(1):557

Sauer W (1971) Thermal aspects of grinding. Ph.D. thesis, Carnegie-Mellon University

Guo C, Wu Y, Varghese V, Malkin S (1999) Temperatures and energy partition for grinding with vitrified CBN wheels. CIRP Ann Manuf Technol 48(1):247

Anderson D, Warkentin A, Bauer R (2008) Experimental validation of numerical thermal models for dry grinding. J Mater Process Technol 204(1–3):269

Mahdi M, Zhang L (1998) Applied mechanics in grinding VI. Residual stresses and surface hardening by coupled thermo-plasticity and phase transformation. Int J Mach Tool Manuf 38(10–11):1289

Zarudi I, Zhang L (2002) A revisit to some wheel–workpiece interaction problems in surface grinding. Int J Mach Tool Manuf 42(8):905

Rowe W, Black S, Mills B, Qi H, Morgan M (1995) Experimental investigation of heat transfer in grinding. CIRP Ann Manuf Technol 44(1):329

Brosse A, Naisson P, Hamdi H, Bergheau J (2008) Temperature measurement and heat flux characterization in grinding using thermography. J Mater Process Technol 201(1–3):590

González-Santander JL (2016) Maximum temperature and relaxation time in wet surface grinding for a general heat flux profile. Math Probl Eng 2016:5387612

González-Santander JL, Martín G (2015) A theorem for finding maximum temperature in wet grinding. Math Probl Eng 2015:150493

González-Santander J, Martín G (2015) Closed form expression for the surface temperature in wet grinding: application to maximum temperature evaluation. J Eng Math 90(1):173

Cohen H, Villegas F, Zagier D (2000) Convergence acceleration of alternating series. Exp Math 9(1):3

González-Santander JL (2017) Efficient series expansions of the temperature field in dry surface grinding for usual heat flux profiles. Math Probl Eng 2017:1856523

Oldham K, Myland J, Spanier J (2010) An atlas of functions: with equator, the atlas function calculator. Springer, Berlin

Olver F, Lozier D, Boisvert R, Clark C (2010) NIST handbook of mathematical functions hardback and CD-ROM. Cambridge University Press, Cambridge

González-Santander J (2014) Calculation of an integral arising in dry flat grinding for a general heat flux profile. Application to maximum temperature evaluation. J Eng Math 88(1):137

González-Santander J (2016) Analytic solution for maximum temperature during cut in and cut out in surface dry grinding. Appl Math Model 40(3):2356

Murav’ev V, Yakimov A, Chernyshev A (2003) Effect of deformation, welding, and electrocontact heating on the properties of titanium alloy VT20 in pressed and welded structures. Met Sci Heat Treat 45(11–12):419

Skuratov D, Ratis Y, Selezneva I, Pérez J, Fernández de Córdoba P, Urchueguía J (2007) Mathematical modelling and analytical solution for workpiece temperature in grinding. Appl Math Model 31(6):1039

Yasui H (1983) Influence of fluid type on wet grinding temperature. Bull Jpn Soc Precis Eng 17(2):133

Suhadolnik A (2012) Appl Math Lett 25(11):1755

Hoffman J, Frankel S (2001) Numerical methods for engineers and scientists. CRC Press, Boca Raton

González-Santander J, Martín G (2014) Numerical methods for engineers and scientists. Math Method Appl Sci 37(18):2906

González-Santander J, Espinós-Morató H (2018) Depth of thermal penetration in straight grinding. Int J Adv Manuf Technol 96(9–12):3175

Lebedev N (1965) Special functions and their applications. Prentice-Hall Inc., Upper Saddle River

Apostol T (1967) Calculus, 2nd edn. Wiley, New York

Gradsthteyn I, Ryzhik M (2007) Numerical methods for engineers and scientists, 7th edn. Academic Press Inc, Cambridge

[-]

This item appears in the following Collection(s)

Show full item record