- -

Efficient temperature field evaluation in wet surface grinding for arbitrary heat flux profile

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient temperature field evaluation in wet surface grinding for arbitrary heat flux profile

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Santander Martínez, Juan Luis es_ES
dc.contributor.author Monreal Mengual, Llucía es_ES
dc.date.accessioned 2020-05-29T03:33:24Z
dc.date.available 2020-05-29T03:33:24Z
dc.date.issued 2019-06-15 es_ES
dc.identifier.issn 0022-0833 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144581
dc.description.abstract [EN] We consider the heat transfer in surface wet grinding, assuming a constant heat-transfer coefficient over the workpiece surface, as well as the usual heat flux profiles entering into the workpiece given in the literature, i.e. constant, linear, parabolic and triangular. On the one hand, we calculate in the stationary regime, the temperature distribution on the workpiece surface in series form. These series converge only for Biot numbers less than unity. By using convergence acceleration, these series can be computed more rapidly than its equivalent integral form without any appreciable loss of accuracy. Also, we avoid the numerical integration problems found in the expressions given in the literature. Moreover, the expressions found can be used to compute the maximum temperature of the workpiece very rapidly. On the other hand, we have refined some approximations for the relaxation time in wet grinding, and we have derived some new expressions for dry grinding. The relaxation time has been applied to compute the temperature field inside the workpiece in the stationary regime, obtaining a more rapid numerical evaluation without any appreciable loss of precision. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Engineering Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Convergence acceleration es_ES
dc.subject Heat transfer in grinding es_ES
dc.subject Maximum temperature in grinding es_ES
dc.subject Wet grinding es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Efficient temperature field evaluation in wet surface grinding for arbitrary heat flux profile es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10665-019-10004-y es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation González-Santander Martínez, JL.; Monreal Mengual, L. (2019). Efficient temperature field evaluation in wet surface grinding for arbitrary heat flux profile. Journal of Engineering Mathematics. 116(1):101-122. https://doi.org/10.1007/s10665-019-10004-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10665-019-10004-y es_ES
dc.description.upvformatpinicio 101 es_ES
dc.description.upvformatpfin 122 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 116 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\392726 es_ES
dc.description.references Malkin S, Guo C (2008) Grinding technology: theory and application of machining with abrasives. Industrial Press Inc., New York es_ES
dc.description.references Guo C, Malkin S (1995) Analysis of energy partition in grinding. J Eng Ind 117(1):55 es_ES
dc.description.references Malkin S, Anderson R (1974) Thermal aspects of grinding: part 1 energy partition. J Eng Ind 96(4):1177 es_ES
dc.description.references Lavine A, von Turkovich B (1991) Thermal aspects of grinding: the effect of heat generation at the shear planes. CIRP Ann Manuf Technol 40(1):343 es_ES
dc.description.references Lavine A (2000) An exact solution for surface temperature in down grinding. Int J Heat Mass Transf 43(24):4447 es_ES
dc.description.references Jaeger J (1942) Moving sources of heat and the temperature of sliding contacts. Proc R Soc NSW 76(76):203–224 es_ES
dc.description.references DesRuisseaux N, Zerkle R (1970) Temperature in semi-infinite and cylindrical bodies subjected to moving heat sources and surface cooling. J Heat Transf 92(3):456 es_ES
dc.description.references Jaeger J, Carslaw H (1988) Conduction of heat in solids. Clarendon, Oxford es_ES
dc.description.references Lavine A, Malkin S, Jen T (1989) Thermal aspects of grinding with CBN wheels. CIRP Ann Manuf Technol 38(1):557 es_ES
dc.description.references Sauer W (1971) Thermal aspects of grinding. Ph.D. thesis, Carnegie-Mellon University es_ES
dc.description.references Guo C, Wu Y, Varghese V, Malkin S (1999) Temperatures and energy partition for grinding with vitrified CBN wheels. CIRP Ann Manuf Technol 48(1):247 es_ES
dc.description.references Anderson D, Warkentin A, Bauer R (2008) Experimental validation of numerical thermal models for dry grinding. J Mater Process Technol 204(1–3):269 es_ES
dc.description.references Mahdi M, Zhang L (1998) Applied mechanics in grinding VI. Residual stresses and surface hardening by coupled thermo-plasticity and phase transformation. Int J Mach Tool Manuf 38(10–11):1289 es_ES
dc.description.references Zarudi I, Zhang L (2002) A revisit to some wheel–workpiece interaction problems in surface grinding. Int J Mach Tool Manuf 42(8):905 es_ES
dc.description.references Rowe W, Black S, Mills B, Qi H, Morgan M (1995) Experimental investigation of heat transfer in grinding. CIRP Ann Manuf Technol 44(1):329 es_ES
dc.description.references Brosse A, Naisson P, Hamdi H, Bergheau J (2008) Temperature measurement and heat flux characterization in grinding using thermography. J Mater Process Technol 201(1–3):590 es_ES
dc.description.references González-Santander JL (2016) Maximum temperature and relaxation time in wet surface grinding for a general heat flux profile. Math Probl Eng 2016:5387612 es_ES
dc.description.references González-Santander JL, Martín G (2015) A theorem for finding maximum temperature in wet grinding. Math Probl Eng 2015:150493 es_ES
dc.description.references González-Santander J, Martín G (2015) Closed form expression for the surface temperature in wet grinding: application to maximum temperature evaluation. J Eng Math 90(1):173 es_ES
dc.description.references Cohen H, Villegas F, Zagier D (2000) Convergence acceleration of alternating series. Exp Math 9(1):3 es_ES
dc.description.references González-Santander JL (2017) Efficient series expansions of the temperature field in dry surface grinding for usual heat flux profiles. Math Probl Eng 2017:1856523 es_ES
dc.description.references Oldham K, Myland J, Spanier J (2010) An atlas of functions: with equator, the atlas function calculator. Springer, Berlin es_ES
dc.description.references Olver F, Lozier D, Boisvert R, Clark C (2010) NIST handbook of mathematical functions hardback and CD-ROM. Cambridge University Press, Cambridge es_ES
dc.description.references González-Santander J (2014) Calculation of an integral arising in dry flat grinding for a general heat flux profile. Application to maximum temperature evaluation. J Eng Math 88(1):137 es_ES
dc.description.references González-Santander J (2016) Analytic solution for maximum temperature during cut in and cut out in surface dry grinding. Appl Math Model 40(3):2356 es_ES
dc.description.references Murav’ev V, Yakimov A, Chernyshev A (2003) Effect of deformation, welding, and electrocontact heating on the properties of titanium alloy VT20 in pressed and welded structures. Met Sci Heat Treat 45(11–12):419 es_ES
dc.description.references Skuratov D, Ratis Y, Selezneva I, Pérez J, Fernández de Córdoba P, Urchueguía J (2007) Mathematical modelling and analytical solution for workpiece temperature in grinding. Appl Math Model 31(6):1039 es_ES
dc.description.references Yasui H (1983) Influence of fluid type on wet grinding temperature. Bull Jpn Soc Precis Eng 17(2):133 es_ES
dc.description.references Suhadolnik A (2012) Appl Math Lett 25(11):1755 es_ES
dc.description.references Hoffman J, Frankel S (2001) Numerical methods for engineers and scientists. CRC Press, Boca Raton es_ES
dc.description.references González-Santander J, Martín G (2014) Numerical methods for engineers and scientists. Math Method Appl Sci 37(18):2906 es_ES
dc.description.references González-Santander J, Espinós-Morató H (2018) Depth of thermal penetration in straight grinding. Int J Adv Manuf Technol 96(9–12):3175 es_ES
dc.description.references Lebedev N (1965) Special functions and their applications. Prentice-Hall Inc., Upper Saddle River es_ES
dc.description.references Apostol T (1967) Calculus, 2nd edn. Wiley, New York es_ES
dc.description.references Gradsthteyn I, Ryzhik M (2007) Numerical methods for engineers and scientists, 7th edn. Academic Press Inc, Cambridge es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem