- -

Study of thermal and rheological properties of PLA loaded with carbon and halloysite nanotubes for additive manufacturing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study of thermal and rheological properties of PLA loaded with carbon and halloysite nanotubes for additive manufacturing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cobos, Christian Mauricio es_ES
dc.contributor.author Garzón, Luis es_ES
dc.contributor.author López-Martínez, Juan es_ES
dc.contributor.author Fenollar, Octavio es_ES
dc.contributor.author Ferrándiz Bou, Santiago es_ES
dc.date.accessioned 2020-05-29T03:33:25Z
dc.date.available 2020-05-29T03:33:25Z
dc.date.issued 2019-05-13 es_ES
dc.identifier.issn 1355-2546 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144582
dc.description.abstract [EN] Purpose This paper aims to propose using polylactic acid (PLA) as an alternative to nanocomposites in additive manufacturing processes in fusion deposition modelling (FDM) systems and describe its thermal and rheological conditions with multi-wall carbon nanotube (PLA/MWCNT) and halloysite nanotube (PLA/HNT) composites for possible applications in additive manufacturing processes. Design/methodology/approach PLA/MWCNTs and PLA/HNTs were obtained through fusion in a co-rotating twin-screw extruder. PLA was mixed with different percentages of MWCNTs and HNTs at concentrations of 0.5 Wt.%, 0.75 Wt.% and 1 Wt.%. Differential scanning calorimetry (DSC) and capillary rheometry were used to characterise these products, together with an analysis of the melt flow index (MFI). Findings The DSC data revealed that the nanocomposites had a glass transition temperature T-g = 65 +/- 2 degrees C and a melting temperature T-m = 169 +/- 1 degrees C. The crystallisation temperature of PLA/MWCNTs and PLA/HNTs was between 107 +/- 2 degrees C and 129 degrees C, respectively. The viscosity data of PLA/MWCNTs and PLA/HNTs obtained by capillary rheometry indicated that the viscosity of the materials is the same as that of neat PLA. These results were confirmed by the higher fluidity index in the MFI analysis. Originality/value This paper presents an alternative for the applications of nanocomposites in additive manufacturing processes in FDM systems. es_ES
dc.language Inglés es_ES
dc.publisher Emerald es_ES
dc.relation.ispartof Rapid Prototyping Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Carbon nanotubes es_ES
dc.subject Additive manufacturing es_ES
dc.subject 3D printing es_ES
dc.subject Thermal testing es_ES
dc.subject Halloysites nanotubes es_ES
dc.subject Rheological es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title Study of thermal and rheological properties of PLA loaded with carbon and halloysite nanotubes for additive manufacturing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1108/RPJ-11-2018-0289 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Cobos, CM.; Garzón, L.; López-Martínez, J.; Fenollar, O.; Ferrándiz Bou, S. (2019). Study of thermal and rheological properties of PLA loaded with carbon and halloysite nanotubes for additive manufacturing. Rapid Prototyping Journal. 25(4):738-743. https://doi.org/10.1108/RPJ-11-2018-0289 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1108/RPJ-11-2018-0289 es_ES
dc.description.upvformatpinicio 738 es_ES
dc.description.upvformatpfin 743 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\388540 es_ES
dc.description.references Altınkaynak, A., Gupta, M., Spalding, M. A., & Crabtree, S. L. (2011). Melting in a Single Screw Extruder: Experiments and 3D Finite Element Simulations. International Polymer Processing, 26(2), 182-196. doi:10.3139/217.2419 es_ES
dc.description.references Berber, S. Kwon, Y.-K. and Tománek, D. (2000), “Unusually high thermal conductivity of carbon nanotubes”, available at: https://pdfs.semanticscholar.org/6595/44a005ba8d622c272d4bf737f12e26f8c415.pdf (accessed 23 February 2019). es_ES
dc.description.references Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116-125. doi:10.1016/j.polymdegradstab.2009.11.045 es_ES
dc.description.references Dong, Y., Chaudhary, D., Haroosh, H., & Bickford, T. (2011). Development and characterisation of novel electrospun polylactic acid/tubular clay nanocomposites. Journal of Materials Science, 46(18), 6148-6153. doi:10.1007/s10853-011-5605-6 es_ES
dc.description.references Ferri Azor, J.M., Balart Gimeno, R.A. and Fenollar Gimeno, O. (2017), Desarrollo de formulaciones derivadas de ácido poliláctico (PLA), mediante plastificación e incorporación de aditivos de origen natural, Doctoral Thesis, Universitat Politècnica de València, Alcoy. es_ES
dc.description.references Gao, Y., Picot, O. T., Bilotti, E., & Peijs, T. (2017). Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. European Polymer Journal, 86, 117-131. doi:10.1016/j.eurpolymj.2016.10.045 es_ES
dc.description.references Hamad, K., Kaseem, M., & Deri, F. (2011). Melt Rheology of Poly(Lactic Acid)/Low Density Polyethylene Polymer Blends. Advances in Chemical Engineering and Science, 01(04), 208-214. doi:10.4236/aces.2011.14030 es_ES
dc.description.references Harris, A. M., & Lee, E. C. (2007). Improving mechanical performance of injection molded PLA by controlling crystallinity. Journal of Applied Polymer Science, 107(4), 2246-2255. doi:10.1002/app.27261 es_ES
dc.description.references Kim, S. Y., Shin, K. S., Lee, S. H., Kim, K. W., & Youn, J. R. (2010). Unique crystallization behavior of multi-walled carbon nanotube filled poly(lactic acid). Fibers and Polymers, 11(7), 1018-1023. doi:10.1007/s12221-010-1018-4 es_ES
dc.description.references Li, T., Turng, L.-S., Gong, S., & Erlacher, K. (2006). Polylactide, nanoclay, and core–shell rubber composites. Polymer Engineering & Science, 46(10), 1419-1427. doi:10.1002/pen.20629 es_ES
dc.description.references López, J., Navarro, R., Gallego, J. M., Parres, F., & Ferrandiz, S. (2009). Analysis weld seam weak in blow molding large parts made of commodity plastics. Engineering Failure Analysis, 16(3), 856-862. doi:10.1016/j.engfailanal.2008.07.007 es_ES
dc.description.references Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17-46. doi:10.1016/j.addr.2016.04.003 es_ES
dc.description.references Richard, T. (2008), “Preparación y caracterización de nanocompuestos en base PLA”, Universitat Politècnica de Catalunya. available at: http://upcommons.upc.edu/handle/2099.1/4791 (accessed 26 July 2017). es_ES
dc.description.references Singh, V. P., Vimal, K. K., Kapur, G. S., Sharma, S., & Choudhary, V. (2016). High-density polyethylene/halloysite nanocomposites: morphology and rheological behaviour under extensional and shear flow. Journal of Polymer Research, 23(3). doi:10.1007/s10965-016-0937-1 es_ES
dc.description.references Song, Y., Li, Y., Song, W., Yee, K., Lee, K.-Y., & Tagarielli, V. L. (2017). Measurements of the mechanical response of unidirectional 3D-printed PLA. Materials & Design, 123, 154-164. doi:10.1016/j.matdes.2017.03.051 es_ES
dc.description.references Suriñach, S., Baro, M.D., Bordas, S., Clavaguera, N. and Clavaguera-mora, M.T. (1992), “La calorimetría diferencial de barrido y su aplicación a la ciencia de materiales”, Vol. 31, available at: http://boletines.secv.es/upload/199231011.pdf (accessed: 26 July 2017). es_ES
dc.description.references Wu, W., Cao, X., Zhang, Y., & He, G. (2013). Polylactide/halloysite nanotube nanocomposites: Thermal, mechanical properties, and foam processing. Journal of Applied Polymer Science, 130(1), 443-452. doi:10.1002/app.39179 es_ES
dc.description.references Yuan, P., Tan, D., & Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 112-113, 75-93. doi:10.1016/j.clay.2015.05.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem