- -

Study of thermal and rheological properties of PLA loaded with carbon and halloysite nanotubes for additive manufacturing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study of thermal and rheological properties of PLA loaded with carbon and halloysite nanotubes for additive manufacturing

Mostrar el registro completo del ítem

Cobos, CM.; Garzón, L.; López-Martínez, J.; Fenollar, O.; Ferrándiz Bou, S. (2019). Study of thermal and rheological properties of PLA loaded with carbon and halloysite nanotubes for additive manufacturing. Rapid Prototyping Journal. 25(4):738-743. https://doi.org/10.1108/RPJ-11-2018-0289

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144582

Ficheros en el ítem

Metadatos del ítem

Título: Study of thermal and rheological properties of PLA loaded with carbon and halloysite nanotubes for additive manufacturing
Autor: Cobos, Christian Mauricio Garzón, Luis López-Martínez, Juan Fenollar, Octavio Ferrándiz Bou, Santiago
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] Purpose This paper aims to propose using polylactic acid (PLA) as an alternative to nanocomposites in additive manufacturing processes in fusion deposition modelling (FDM) systems and describe its thermal and rheological ...[+]
Palabras clave: Carbon nanotubes , Additive manufacturing , 3D printing , Thermal testing , Halloysites nanotubes , Rheological
Derechos de uso: Reserva de todos los derechos
Fuente:
Rapid Prototyping Journal. (issn: 1355-2546 )
DOI: 10.1108/RPJ-11-2018-0289
Editorial:
Emerald
Versión del editor: https://doi.org/10.1108/RPJ-11-2018-0289
Tipo: Artículo

References

Altınkaynak, A., Gupta, M., Spalding, M. A., & Crabtree, S. L. (2011). Melting in a Single Screw Extruder: Experiments and 3D Finite Element Simulations. International Polymer Processing, 26(2), 182-196. doi:10.3139/217.2419

Berber, S. Kwon, Y.-K. and Tománek, D. (2000), “Unusually high thermal conductivity of carbon nanotubes”, available at: https://pdfs.semanticscholar.org/6595/44a005ba8d622c272d4bf737f12e26f8c415.pdf (accessed 23 February 2019).

Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116-125. doi:10.1016/j.polymdegradstab.2009.11.045 [+]
Altınkaynak, A., Gupta, M., Spalding, M. A., & Crabtree, S. L. (2011). Melting in a Single Screw Extruder: Experiments and 3D Finite Element Simulations. International Polymer Processing, 26(2), 182-196. doi:10.3139/217.2419

Berber, S. Kwon, Y.-K. and Tománek, D. (2000), “Unusually high thermal conductivity of carbon nanotubes”, available at: https://pdfs.semanticscholar.org/6595/44a005ba8d622c272d4bf737f12e26f8c415.pdf (accessed 23 February 2019).

Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116-125. doi:10.1016/j.polymdegradstab.2009.11.045

Dong, Y., Chaudhary, D., Haroosh, H., & Bickford, T. (2011). Development and characterisation of novel electrospun polylactic acid/tubular clay nanocomposites. Journal of Materials Science, 46(18), 6148-6153. doi:10.1007/s10853-011-5605-6

Ferri Azor, J.M., Balart Gimeno, R.A. and Fenollar Gimeno, O. (2017), Desarrollo de formulaciones derivadas de ácido poliláctico (PLA), mediante plastificación e incorporación de aditivos de origen natural, Doctoral Thesis, Universitat Politècnica de València, Alcoy.

Gao, Y., Picot, O. T., Bilotti, E., & Peijs, T. (2017). Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. European Polymer Journal, 86, 117-131. doi:10.1016/j.eurpolymj.2016.10.045

Hamad, K., Kaseem, M., & Deri, F. (2011). Melt Rheology of Poly(Lactic Acid)/Low Density Polyethylene Polymer Blends. Advances in Chemical Engineering and Science, 01(04), 208-214. doi:10.4236/aces.2011.14030

Harris, A. M., & Lee, E. C. (2007). Improving mechanical performance of injection molded PLA by controlling crystallinity. Journal of Applied Polymer Science, 107(4), 2246-2255. doi:10.1002/app.27261

Kim, S. Y., Shin, K. S., Lee, S. H., Kim, K. W., & Youn, J. R. (2010). Unique crystallization behavior of multi-walled carbon nanotube filled poly(lactic acid). Fibers and Polymers, 11(7), 1018-1023. doi:10.1007/s12221-010-1018-4

Li, T., Turng, L.-S., Gong, S., & Erlacher, K. (2006). Polylactide, nanoclay, and core–shell rubber composites. Polymer Engineering & Science, 46(10), 1419-1427. doi:10.1002/pen.20629

López, J., Navarro, R., Gallego, J. M., Parres, F., & Ferrandiz, S. (2009). Analysis weld seam weak in blow molding large parts made of commodity plastics. Engineering Failure Analysis, 16(3), 856-862. doi:10.1016/j.engfailanal.2008.07.007

Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17-46. doi:10.1016/j.addr.2016.04.003

Richard, T. (2008), “Preparación y caracterización de nanocompuestos en base PLA”, Universitat Politècnica de Catalunya. available at: http://upcommons.upc.edu/handle/2099.1/4791 (accessed 26 July 2017).

Singh, V. P., Vimal, K. K., Kapur, G. S., Sharma, S., & Choudhary, V. (2016). High-density polyethylene/halloysite nanocomposites: morphology and rheological behaviour under extensional and shear flow. Journal of Polymer Research, 23(3). doi:10.1007/s10965-016-0937-1

Song, Y., Li, Y., Song, W., Yee, K., Lee, K.-Y., & Tagarielli, V. L. (2017). Measurements of the mechanical response of unidirectional 3D-printed PLA. Materials & Design, 123, 154-164. doi:10.1016/j.matdes.2017.03.051

Suriñach, S., Baro, M.D., Bordas, S., Clavaguera, N. and Clavaguera-mora, M.T. (1992), “La calorimetría diferencial de barrido y su aplicación a la ciencia de materiales”, Vol. 31, available at: http://boletines.secv.es/upload/199231011.pdf (accessed: 26 July 2017).

Wu, W., Cao, X., Zhang, Y., & He, G. (2013). Polylactide/halloysite nanotube nanocomposites: Thermal, mechanical properties, and foam processing. Journal of Applied Polymer Science, 130(1), 443-452. doi:10.1002/app.39179

Yuan, P., Tan, D., & Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 112-113, 75-93. doi:10.1016/j.clay.2015.05.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem