- -

Comparison of different modeling approaches for minichannel evaporators under dehumidification

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Comparison of different modeling approaches for minichannel evaporators under dehumidification

Show full item record

Hassan, A.; Martinez-Ballester, S.; Gonzálvez-Maciá, J. (2019). Comparison of different modeling approaches for minichannel evaporators under dehumidification. Heat and Mass Transfer. 55(10):2901-2919. https://doi.org/10.1007/s00231-019-02622-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144584

Files in this item

Item Metadata

Title: Comparison of different modeling approaches for minichannel evaporators under dehumidification
Author: Hassan, Abdelrahman-Hussein Martinez-Ballester, Santiago Gonzálvez-Maciá, José
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] This paper firstly presents a comprehensive minichannel evaporator model (MCHX-1D-MB) based on fin theory coupled with the moving boundary technique along fin height. To validate the presented model, experimental data ...[+]
Subjects: Minichannel evaporator , Modelling , Two-pahse, Pressure drop , Heat transfer
Copyrigths: Reserva de todos los derechos
Source:
Heat and Mass Transfer. (issn: 0947-7411 )
DOI: 10.1007/s00231-019-02622-0
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s00231-019-02622-0
Project ID:
MINISTERIO DE ECONOMIA Y EMPRESA/ENE2014-53311-C2-1-P
Thanks:
The authors would like to gratefully acknowledge the financial support from the Spanish Ministry of Economy and Finance to project number ENE2014-53311-C2-1-P.
Type: Artículo

References

Kim MH, Bullard CW (2001) Development of a microchannel evaporator model for a CO2 air-conditioning system. Energy 26:931–948

Jin J, Chen J, Chen Z (2011) Development and validation of a microchannel evaporator model for a CO 2 air-conditioning system. Appl Therm Eng 31:137–146. https://doi.org/10.1016/j.applthermaleng.2010.06.019

Wu XM, Webb RL (2002) Thermal and hydraulic analysis of a brazed aluminum evaporator. Appl Therm Eng 22:1369–1390. https://doi.org/10.1016/S1359-4311(02)00058-3 [+]
Kim MH, Bullard CW (2001) Development of a microchannel evaporator model for a CO2 air-conditioning system. Energy 26:931–948

Jin J, Chen J, Chen Z (2011) Development and validation of a microchannel evaporator model for a CO 2 air-conditioning system. Appl Therm Eng 31:137–146. https://doi.org/10.1016/j.applthermaleng.2010.06.019

Wu XM, Webb RL (2002) Thermal and hydraulic analysis of a brazed aluminum evaporator. Appl Therm Eng 22:1369–1390. https://doi.org/10.1016/S1359-4311(02)00058-3

Brix W, Kærn MR, Elmegaard B (2009) Modelling refrigerant distribution in microchannel evaporators. Int J Refrig 32:1736–1743. https://doi.org/10.1016/j.ijrefrig.2009.05.006

Zhao Y, Liang Y, Sun Y, Chen J (2012) Development of a mini-channel evaporator model using R1234yf as working fluid. Int J Refrig 35:2166–2178. https://doi.org/10.1016/j.ijrefrig.2012.08.026

Ren T, Ding G, Wang T, Hu H (2013) A general three-dimensional simulation approach for micro-channel heat exchanger based on graph theory. Appl Therm Eng 59:660–674. https://doi.org/10.1016/j.applthermaleng.2013.06.035

Gossard JJ, Han X, Ramalingam M, Sommers AD (2013) Investigating the thermal-hydraulic performance of new refrigerant mixtures through numerical simulation of minichannel and microchannel evaporators. Appl Therm Eng 50:1291–1298. https://doi.org/10.1016/j.applthermaleng.2012.07.011

Huang L, Bacellar D, Aute V, Radermacher R (2015) Variable geometry microchannel heat exchanger modeling under dry, wet, and partially wet surface conditions accounting for tube-to-tube heat conduction. Sci Technol Built Environ 21:703–717. https://doi.org/10.1080/23744731.2015.1047717

Tian Z, Ma L, Gu B et al (2016) Numerical model of a parallel flow minichannel evaporator with new flow boiling heat transfer correlation. Int J Refrig 63:1–13. https://doi.org/10.1016/j.ijrefrig.2015.10.032

Hwang Y (1997) Comprehensive investigation of carbon dioxide refrigeration cycle. PhD Thesis, University of Maryland, College Park

Tran TN, Chyu MC, Wambsganss MW, France DM (2000) Two-phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development. Int J Multiphase Flow 26:1739–1754. https://doi.org/10.1016/S0301-9322(99)00119-6

Kim MH, Bullard CW (2002) Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers. Int J Refrig 25:390–400. https://doi.org/10.1016/S0140-7007(01)00025-1

Kim MH, Bullard CW (2002) Air-side performance of brazed aluminum heat exchangers under dehumidifying conditions. Int J Refrig 25:924–934. https://doi.org/10.1016/S0140-7007(01)00106-2

Cheng L, Ribatski G, Wojtan L, Thome JR (2006) New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes. Int J Heat Mass Transf 49:4082–4094. https://doi.org/10.1016/j.ijheatmasstransfer.2006.04.003

Jassim EW, Newell TA (2006) Prediction of two-phase pressure drop and void fraction in microchannels using probabilistic flow regime mapping. Int J Heat Mass Transf 49:2446–2457. https://doi.org/10.1016/j.ijheatmasstransfer.2006.01.034

Petukhov BS, Kurganov VA, Gladuntsov AI (1973) Heat transfer in turbulent pipe flow of gases with variable properties. Heat Transf –Sov Res 5:109–116

Shah MM (1976) A new correlation for heat transfer during boiling flow through pipes. ASHRAE Trans 82(Part 2):66–86

Zhang M, Webb RL (2001) Correlation of two-phase friction for refrigerants in small-diameter tubes. Exp Thermal Fluid Sci 25:131–139. https://doi.org/10.1016/S0894-1777(01)00066-8

Webb RL, Hang YJ, Wang CC (1995) Heat transfer and friction correlation for louver fin geometry. In: 1995 vehicle thermal management system conference proceeding, pp 533–541

Zhang W, Hibiki T, Mishima K (2004) Correlation for flow boiling heat transfer in mini-channels. Int J Heat Mass Transf 47:5749–5763. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.034

Müller-Steinhagen H, Heck K (1986) A simple friction pressure drop correlation for two-phase flow in pipes. Chem Eng Process Process Intensif 20:297–308. https://doi.org/10.1016/0255-2701(86)80008-3

Friedel L (1979) Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow. In: European two-phase flow group meeting, Ispra, Italy

Chang Y-J, Wang C-C (1997) A generalized heat transfer correlation for Iouver fin geometry. Int J Heat Mass Transf 40:533–544. https://doi.org/10.1016/0017-9310(96)00116-0

Chang Y-J, Hsu K-C, Lin Y-T, Wang C-C (2000) A generalized friction correlation for louver fin geometry. Int J Heat Mass Transf 43:2237–2243. https://doi.org/10.1016/S0017-9310(99)00289-6

Kandlikar SG, Steinke ME (2003) Predicting heat transfer during flow boiling in Minichannels and microchannels. ASHRAE Trans 109:1–9

Peters JVS, Kandlikar SG (2007) Further evaluation of a flow boiling correlation for microchannels and minichannels. In: 5th international conference on Nanochannels, microchannels and Minichannels (ICNMM2007), Puebla, Mexico

Field BS, Hrnjak P (2007) Adiabatic two-phase pressure drop of refrigerants in small channels. Heat Transf Eng 28:704–712. https://doi.org/10.1080/01457630701326456

Park Y-G, Jacobi AM (2009) Air-side heat transfer and friction correlations for flat-tube louver-fin heat exchangers. J Heat Transf 131:021801. https://doi.org/10.1115/1.3000609

Park Y-G, Jacobi AM (2009) The air-side thermal-hydraulic performance of flat-tube heat exchangers with louvered, wavy, and plain fins under dry and wet conditions. J Heat Transf 131:061801. https://doi.org/10.1115/1.3089548

Deru M (2003) A model for ground-coupled heat and moisture transfer from buildings. Technical report. National Renewable Energy Laboratory, Golden

Tuo H, Hrnjak P (2012) Flash gas bypass in mobile air conditioning system with R134a. Int J Refrig 35:1869–1877. https://doi.org/10.1016/j.ijrefrig.2012.05.013

Gungor KE, Winterton RHS (1986) A general correlation for flow boiling in tubes and annuli. Int J Heat Mass Transf 29:351–358. https://doi.org/10.1016/0017-9310(86)90205-X

Hu H t, Ding G l, Huang X c et al (2009) Pressure drop during horizontal flow boiling of R410A/oil mixture in 5 mm and 3 mm smooth tubes. Appl Therm Eng 29:3353–3365. https://doi.org/10.1016/j.applthermaleng.2009.05.011

McQuiston FC (1975) Fin efficiency with combined heat and mass transfer. ASHRAE Trans 81:350–355

Hassan AH, Martínez-Ballester S, Gonzálvez-Maciá J (2015) A comparative study between a two-dimensional numerical minichannel evaporator model and a classical effectiveness–NTU approach under different dehumidifying conditions. Sci Technol Built Environ 21:681–692. https://doi.org/10.1080/23744731.2015.1028866

Hassan AH, Martínez-Ballester S, Gonzálvez-Maciá J (2016) Two-dimensional numerical modeling for the air-side of minichannel evaporators accounting for partial dehumidification scenarios and tube-to-tube heat conduction. Int J Refrig 67:90–101. https://doi.org/10.1016/j.ijrefrig.2016.04.003

Hassan AH, Martínez-Ballester S, Gonzálvez-Maciá J (2017) A new moving boundary model for evaluating the performance of wet fins: application to minichannel evaporators. Appl Therm Eng 127:566–579. https://doi.org/10.1016/j.applthermaleng.2017.08.055

IMST-ART (2010) Simulation tool to assist the selection, design and optimization of refrigeration equipment and components. In: Inst. Univ. Investig. en Ing. Energética. Univ. Politècnica València, Val http://www.imst-art.com/

Sharqawy MH, Zubair SM (2008) Efficiency and optimization of straight fins with combined heat and mass transfer – an analytical solution. Appl Therm Eng 28:2279–2288. https://doi.org/10.1016/j.applthermaleng.2008.01.003

Chisholm D (1972) An equation for velocity ratio in two-phase flow

Gnielinski V (1976) New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng 16:359–368

Churchill SW (1977) Friction-factor equation spans all fluid flow regimes. Chem Eng 7:91–92

Kays WM, London AL (1984) Compact heat exchangers, 3rd edn. McGraw-Hill, New York

Bennett DL, Chen JC (1980) Forced convective boiling in vertical tubes for saturated pure components and binary mixtures. AICHE J 26:454–461. https://doi.org/10.1002/aic.690260317

Cooper MG (1984) Saturation nucleate pool boiling – a simple correlation. In: First U.K. National Conference on heat transfer, pp 785–793

Kandlikar SG, Balasubramanian P (2004) An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels. Heat Transf Eng 25:86–93. https://doi.org/10.1080/01457630490280425

Wojtan L, Ursenbacher T, Thome JR (2005) Investigation of flow boiling in horizontal tubes: part II – development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes. Int J Heat Mass Transf 48:2970–2985. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.013

Mishima K, Hibiki T (1996) Some characteristics of air-water two-phase flow in small diameter vertical tubes. Int J Multiphase Flow 22:703–712. https://doi.org/10.1016/0301-9322(96)00010-9

Lee J, Mudawar I (2005) Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: part I – pressure drop characteristics. Int J Heat Mass Transf 48:928–940. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.018

Corberán JM, De Córdoba PF, Gonzálvez J, Alias F (2001) Semiexplicit method for wall temperature linked equations (SEWTLE): a general finite-volume technique for the calculation of complex heat exchangers. Numer Heat Transf Part B Fundam 40:37–59. https://doi.org/10.1080/104077901300233596

Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, Washington

Coney JER, Sheppard CGW, El-Shafei EAM (1989) Fin performance with condensation from humid air: a numerical investigation. Int J Heat Fluid Flow 10:224–231. https://doi.org/10.1016/0142-727X(89)90041-6

Martínez-Ballester S, Corberán JM, Gonzálvez-Maciá J (2013) Numerical model for microchannel condensers and gas coolers: part II – simulation studies and model comparison. Int J Refrig 36:191–202. https://doi.org/10.1016/j.ijrefrig.2012.08.024

Beaver AC, Yin JM, Bullard CW, Hrnjak PS (1999) An experimental investigation of transcritical carbon dioxide systems for residential air conditioning. Report no. ACRC CR-18. Air Conditioning and Refrigeration Center, College of Engineering, University of Illinois at Urbana-Champaign

[-]

This item appears in the following Collection(s)

Show full item record