- -

Comparison of different modeling approaches for minichannel evaporators under dehumidification

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of different modeling approaches for minichannel evaporators under dehumidification

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hassan, Abdelrahman-Hussein es_ES
dc.contributor.author Martinez-Ballester, Santiago es_ES
dc.contributor.author Gonzálvez-Maciá, José es_ES
dc.date.accessioned 2020-05-29T03:33:30Z
dc.date.available 2020-05-29T03:33:30Z
dc.date.issued 2019-10 es_ES
dc.identifier.issn 0947-7411 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144584
dc.description.abstract [EN] This paper firstly presents a comprehensive minichannel evaporator model (MCHX-1D-MB) based on fin theory coupled with the moving boundary technique along fin height. To validate the presented model, experimental data for R-134a and R-744 (CO2) minichannel evaporators were used. The proposed model successfully predicted the cooling capacity of R-134a and CO2 evaporators with mean absolute error values of +/- 1.8 and +/- 4.3%, respectively. Regarding the outlet air temperature, the mean absolute errors in the estimated results were +/- 0.43 and +/- 0.9 degrees C for R-134a and CO2 evaporators, respectively. Finally, to evaluate the impact of widely used assumption of cut fin on the air-side performance of minichannel evaporators, another model was developed (MCHX-1D-CF). The comparative study revealed that the most remarkable deviations between the two models appear when the evaporator operates under partially wet conditions, which were up to approximate to 12% in the latent heat transfer rate. es_ES
dc.description.sponsorship The authors would like to gratefully acknowledge the financial support from the Spanish Ministry of Economy and Finance to project number ENE2014-53311-C2-1-P. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Heat and Mass Transfer es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Minichannel evaporator es_ES
dc.subject Modelling es_ES
dc.subject Two-pahse, Pressure drop es_ES
dc.subject Heat transfer es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Comparison of different modeling approaches for minichannel evaporators under dehumidification es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00231-019-02622-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2014-53311-C2-1-P/ES/APROVECHAMIENTO DEL CALOR RESIDUAL A BAJA TEMPERATURA MEDIANTE BOMBAS DE CALOR PARA LA PRODUCCION DE AGUA CALIENTE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Hassan, A.; Martinez-Ballester, S.; Gonzálvez-Maciá, J. (2019). Comparison of different modeling approaches for minichannel evaporators under dehumidification. Heat and Mass Transfer. 55(10):2901-2919. https://doi.org/10.1007/s00231-019-02622-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00231-019-02622-0 es_ES
dc.description.upvformatpinicio 2901 es_ES
dc.description.upvformatpfin 2919 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 55 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\394137 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Kim MH, Bullard CW (2001) Development of a microchannel evaporator model for a CO2 air-conditioning system. Energy 26:931–948 es_ES
dc.description.references Jin J, Chen J, Chen Z (2011) Development and validation of a microchannel evaporator model for a CO 2 air-conditioning system. Appl Therm Eng 31:137–146. https://doi.org/10.1016/j.applthermaleng.2010.06.019 es_ES
dc.description.references Wu XM, Webb RL (2002) Thermal and hydraulic analysis of a brazed aluminum evaporator. Appl Therm Eng 22:1369–1390. https://doi.org/10.1016/S1359-4311(02)00058-3 es_ES
dc.description.references Brix W, Kærn MR, Elmegaard B (2009) Modelling refrigerant distribution in microchannel evaporators. Int J Refrig 32:1736–1743. https://doi.org/10.1016/j.ijrefrig.2009.05.006 es_ES
dc.description.references Zhao Y, Liang Y, Sun Y, Chen J (2012) Development of a mini-channel evaporator model using R1234yf as working fluid. Int J Refrig 35:2166–2178. https://doi.org/10.1016/j.ijrefrig.2012.08.026 es_ES
dc.description.references Ren T, Ding G, Wang T, Hu H (2013) A general three-dimensional simulation approach for micro-channel heat exchanger based on graph theory. Appl Therm Eng 59:660–674. https://doi.org/10.1016/j.applthermaleng.2013.06.035 es_ES
dc.description.references Gossard JJ, Han X, Ramalingam M, Sommers AD (2013) Investigating the thermal-hydraulic performance of new refrigerant mixtures through numerical simulation of minichannel and microchannel evaporators. Appl Therm Eng 50:1291–1298. https://doi.org/10.1016/j.applthermaleng.2012.07.011 es_ES
dc.description.references Huang L, Bacellar D, Aute V, Radermacher R (2015) Variable geometry microchannel heat exchanger modeling under dry, wet, and partially wet surface conditions accounting for tube-to-tube heat conduction. Sci Technol Built Environ 21:703–717. https://doi.org/10.1080/23744731.2015.1047717 es_ES
dc.description.references Tian Z, Ma L, Gu B et al (2016) Numerical model of a parallel flow minichannel evaporator with new flow boiling heat transfer correlation. Int J Refrig 63:1–13. https://doi.org/10.1016/j.ijrefrig.2015.10.032 es_ES
dc.description.references Hwang Y (1997) Comprehensive investigation of carbon dioxide refrigeration cycle. PhD Thesis, University of Maryland, College Park es_ES
dc.description.references Tran TN, Chyu MC, Wambsganss MW, France DM (2000) Two-phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development. Int J Multiphase Flow 26:1739–1754. https://doi.org/10.1016/S0301-9322(99)00119-6 es_ES
dc.description.references Kim MH, Bullard CW (2002) Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers. Int J Refrig 25:390–400. https://doi.org/10.1016/S0140-7007(01)00025-1 es_ES
dc.description.references Kim MH, Bullard CW (2002) Air-side performance of brazed aluminum heat exchangers under dehumidifying conditions. Int J Refrig 25:924–934. https://doi.org/10.1016/S0140-7007(01)00106-2 es_ES
dc.description.references Cheng L, Ribatski G, Wojtan L, Thome JR (2006) New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes. Int J Heat Mass Transf 49:4082–4094. https://doi.org/10.1016/j.ijheatmasstransfer.2006.04.003 es_ES
dc.description.references Jassim EW, Newell TA (2006) Prediction of two-phase pressure drop and void fraction in microchannels using probabilistic flow regime mapping. Int J Heat Mass Transf 49:2446–2457. https://doi.org/10.1016/j.ijheatmasstransfer.2006.01.034 es_ES
dc.description.references Petukhov BS, Kurganov VA, Gladuntsov AI (1973) Heat transfer in turbulent pipe flow of gases with variable properties. Heat Transf –Sov Res 5:109–116 es_ES
dc.description.references Shah MM (1976) A new correlation for heat transfer during boiling flow through pipes. ASHRAE Trans 82(Part 2):66–86 es_ES
dc.description.references Zhang M, Webb RL (2001) Correlation of two-phase friction for refrigerants in small-diameter tubes. Exp Thermal Fluid Sci 25:131–139. https://doi.org/10.1016/S0894-1777(01)00066-8 es_ES
dc.description.references Webb RL, Hang YJ, Wang CC (1995) Heat transfer and friction correlation for louver fin geometry. In: 1995 vehicle thermal management system conference proceeding, pp 533–541 es_ES
dc.description.references Zhang W, Hibiki T, Mishima K (2004) Correlation for flow boiling heat transfer in mini-channels. Int J Heat Mass Transf 47:5749–5763. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.034 es_ES
dc.description.references Müller-Steinhagen H, Heck K (1986) A simple friction pressure drop correlation for two-phase flow in pipes. Chem Eng Process Process Intensif 20:297–308. https://doi.org/10.1016/0255-2701(86)80008-3 es_ES
dc.description.references Friedel L (1979) Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow. In: European two-phase flow group meeting, Ispra, Italy es_ES
dc.description.references Chang Y-J, Wang C-C (1997) A generalized heat transfer correlation for Iouver fin geometry. Int J Heat Mass Transf 40:533–544. https://doi.org/10.1016/0017-9310(96)00116-0 es_ES
dc.description.references Chang Y-J, Hsu K-C, Lin Y-T, Wang C-C (2000) A generalized friction correlation for louver fin geometry. Int J Heat Mass Transf 43:2237–2243. https://doi.org/10.1016/S0017-9310(99)00289-6 es_ES
dc.description.references Kandlikar SG, Steinke ME (2003) Predicting heat transfer during flow boiling in Minichannels and microchannels. ASHRAE Trans 109:1–9 es_ES
dc.description.references Peters JVS, Kandlikar SG (2007) Further evaluation of a flow boiling correlation for microchannels and minichannels. In: 5th international conference on Nanochannels, microchannels and Minichannels (ICNMM2007), Puebla, Mexico es_ES
dc.description.references Field BS, Hrnjak P (2007) Adiabatic two-phase pressure drop of refrigerants in small channels. Heat Transf Eng 28:704–712. https://doi.org/10.1080/01457630701326456 es_ES
dc.description.references Park Y-G, Jacobi AM (2009) Air-side heat transfer and friction correlations for flat-tube louver-fin heat exchangers. J Heat Transf 131:021801. https://doi.org/10.1115/1.3000609 es_ES
dc.description.references Park Y-G, Jacobi AM (2009) The air-side thermal-hydraulic performance of flat-tube heat exchangers with louvered, wavy, and plain fins under dry and wet conditions. J Heat Transf 131:061801. https://doi.org/10.1115/1.3089548 es_ES
dc.description.references Deru M (2003) A model for ground-coupled heat and moisture transfer from buildings. Technical report. National Renewable Energy Laboratory, Golden es_ES
dc.description.references Tuo H, Hrnjak P (2012) Flash gas bypass in mobile air conditioning system with R134a. Int J Refrig 35:1869–1877. https://doi.org/10.1016/j.ijrefrig.2012.05.013 es_ES
dc.description.references Gungor KE, Winterton RHS (1986) A general correlation for flow boiling in tubes and annuli. Int J Heat Mass Transf 29:351–358. https://doi.org/10.1016/0017-9310(86)90205-X es_ES
dc.description.references Hu H t, Ding G l, Huang X c et al (2009) Pressure drop during horizontal flow boiling of R410A/oil mixture in 5 mm and 3 mm smooth tubes. Appl Therm Eng 29:3353–3365. https://doi.org/10.1016/j.applthermaleng.2009.05.011 es_ES
dc.description.references McQuiston FC (1975) Fin efficiency with combined heat and mass transfer. ASHRAE Trans 81:350–355 es_ES
dc.description.references Hassan AH, Martínez-Ballester S, Gonzálvez-Maciá J (2015) A comparative study between a two-dimensional numerical minichannel evaporator model and a classical effectiveness–NTU approach under different dehumidifying conditions. Sci Technol Built Environ 21:681–692. https://doi.org/10.1080/23744731.2015.1028866 es_ES
dc.description.references Hassan AH, Martínez-Ballester S, Gonzálvez-Maciá J (2016) Two-dimensional numerical modeling for the air-side of minichannel evaporators accounting for partial dehumidification scenarios and tube-to-tube heat conduction. Int J Refrig 67:90–101. https://doi.org/10.1016/j.ijrefrig.2016.04.003 es_ES
dc.description.references Hassan AH, Martínez-Ballester S, Gonzálvez-Maciá J (2017) A new moving boundary model for evaluating the performance of wet fins: application to minichannel evaporators. Appl Therm Eng 127:566–579. https://doi.org/10.1016/j.applthermaleng.2017.08.055 es_ES
dc.description.references IMST-ART (2010) Simulation tool to assist the selection, design and optimization of refrigeration equipment and components. In: Inst. Univ. Investig. en Ing. Energética. Univ. Politècnica València, Val http://www.imst-art.com/ es_ES
dc.description.references Sharqawy MH, Zubair SM (2008) Efficiency and optimization of straight fins with combined heat and mass transfer – an analytical solution. Appl Therm Eng 28:2279–2288. https://doi.org/10.1016/j.applthermaleng.2008.01.003 es_ES
dc.description.references Chisholm D (1972) An equation for velocity ratio in two-phase flow es_ES
dc.description.references Gnielinski V (1976) New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng 16:359–368 es_ES
dc.description.references Churchill SW (1977) Friction-factor equation spans all fluid flow regimes. Chem Eng 7:91–92 es_ES
dc.description.references Kays WM, London AL (1984) Compact heat exchangers, 3rd edn. McGraw-Hill, New York es_ES
dc.description.references Bennett DL, Chen JC (1980) Forced convective boiling in vertical tubes for saturated pure components and binary mixtures. AICHE J 26:454–461. https://doi.org/10.1002/aic.690260317 es_ES
dc.description.references Cooper MG (1984) Saturation nucleate pool boiling – a simple correlation. In: First U.K. National Conference on heat transfer, pp 785–793 es_ES
dc.description.references Kandlikar SG, Balasubramanian P (2004) An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels. Heat Transf Eng 25:86–93. https://doi.org/10.1080/01457630490280425 es_ES
dc.description.references Wojtan L, Ursenbacher T, Thome JR (2005) Investigation of flow boiling in horizontal tubes: part II – development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes. Int J Heat Mass Transf 48:2970–2985. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.013 es_ES
dc.description.references Mishima K, Hibiki T (1996) Some characteristics of air-water two-phase flow in small diameter vertical tubes. Int J Multiphase Flow 22:703–712. https://doi.org/10.1016/0301-9322(96)00010-9 es_ES
dc.description.references Lee J, Mudawar I (2005) Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: part I – pressure drop characteristics. Int J Heat Mass Transf 48:928–940. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.018 es_ES
dc.description.references Corberán JM, De Córdoba PF, Gonzálvez J, Alias F (2001) Semiexplicit method for wall temperature linked equations (SEWTLE): a general finite-volume technique for the calculation of complex heat exchangers. Numer Heat Transf Part B Fundam 40:37–59. https://doi.org/10.1080/104077901300233596 es_ES
dc.description.references Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, Washington es_ES
dc.description.references Coney JER, Sheppard CGW, El-Shafei EAM (1989) Fin performance with condensation from humid air: a numerical investigation. Int J Heat Fluid Flow 10:224–231. https://doi.org/10.1016/0142-727X(89)90041-6 es_ES
dc.description.references Martínez-Ballester S, Corberán JM, Gonzálvez-Maciá J (2013) Numerical model for microchannel condensers and gas coolers: part II – simulation studies and model comparison. Int J Refrig 36:191–202. https://doi.org/10.1016/j.ijrefrig.2012.08.024 es_ES
dc.description.references Beaver AC, Yin JM, Bullard CW, Hrnjak PS (1999) An experimental investigation of transcritical carbon dioxide systems for residential air conditioning. Report no. ACRC CR-18. Air Conditioning and Refrigeration Center, College of Engineering, University of Illinois at Urbana-Champaign es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem