- -

Segmentation techniques in image analysis: A comparative study

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Segmentation techniques in image analysis: A comparative study

Show full item record

Vitale, R.; Prats-Montalbán, JM.; López García, F.; Blasco Ivars, J.; Ferrer, A. (2016). Segmentation techniques in image analysis: A comparative study. Journal of Chemometrics. 30(12):749-758. https://doi.org/10.1002/cem.2854

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144680

Files in this item

Item Metadata

Title: Segmentation techniques in image analysis: A comparative study
Author: Vitale, Raffaele Prats-Montalbán, José Manuel López García, Fernando BLASCO IVARS, JOSE Ferrer, Alberto
UPV Unit: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Issued date:
Abstract:
[EN] Nowadays, the detection, localization, and quantification of different kinds of features in an RGB image (segmentation) is extremely helpful for, e.g., process monitoring or customer product acceptance. In this ...[+]
Subjects: Color information , Graphs , Multivariate image analysis (MIA) , Segmentation , Textural information
Copyrigths: Reserva de todos los derechos
Source:
Journal of Chemometrics. (issn: 0886-9383 )
DOI: 10.1002/cem.2854
Publisher:
John Wiley & Sons
Publisher version: http://dx.doi.org/10.1002/cem.2854
Project ID:
info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-01/ES/Nuevas técnicas de inspección basadas en espectrometría para la estimación de propiedades y determinación automática de la calidad interna y sanidad de productos agroalimentarios aplicadas a líneas de inspección y manipulación (SPEC-DACSA)/
info:eu-repo/grantAgreement/MINECO//DPI2014-55276-C5-1-R/ES/BIOLOGIA SINTETICA PARA LA MEJORA EN BIOPRODUCCION: DISEÑO, OPTIMIZACION, MONITORIZACION Y CONTROL/
Thanks:
Spanish Ministry of Economy and Competitiveness, Grant/Award Number: DPI2014-55276-C5-1R; Spanish National Institute for Agricultural and Food Research and Technology (INIA), Grant/Award Number: RTA2012-00062-C04-01; ...[+]
Type: Artículo

References

Prats-Montalbán, J. M., de Juan, A., & Ferrer, A. (2011). Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems, 107(1), 1-23. doi:10.1016/j.chemolab.2011.03.002

Bevilacqua, M., Bucci, R., Magrì, A. D., Magrì, A. L., Nescatelli, R., & Marini, F. (2013). Classification and Class-Modelling. Chemometrics in Food Chemistry, 171-233. doi:10.1016/b978-0-444-59528-7.00005-3

Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to Information Retrieval. doi:10.1017/cbo9780511809071 [+]
Prats-Montalbán, J. M., de Juan, A., & Ferrer, A. (2011). Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems, 107(1), 1-23. doi:10.1016/j.chemolab.2011.03.002

Bevilacqua, M., Bucci, R., Magrì, A. D., Magrì, A. L., Nescatelli, R., & Marini, F. (2013). Classification and Class-Modelling. Chemometrics in Food Chemistry, 171-233. doi:10.1016/b978-0-444-59528-7.00005-3

Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to Information Retrieval. doi:10.1017/cbo9780511809071

MacQueen J Some methods for classification and analysis of multivariate observations Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability Berkeley, CA University of California Press 1967 281 297

Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786-804. doi:10.1109/proc.1979.11328

Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient Graph-Based Image Segmentation. International Journal of Computer Vision, 59(2), 167-181. doi:10.1023/b:visi.0000022288.19776.77

Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17(3), 166-173. doi:10.1002/cem.785

Postma, G. J., Krooshof, P. W. T., & Buydens, L. M. C. (2011). Opening the kernel of kernel partial least squares and support vector machines. Analytica Chimica Acta, 705(1-2), 123-134. doi:10.1016/j.aca.2011.04.025

Vitale, R., de Noord, O. E., & Ferrer, A. (2014). A kernel-based approach for fault diagnosis in batch processes. Journal of Chemometrics, 28(8), S697-S707. doi:10.1002/cem.2629

Prats-Montalbán, J. M., & Ferrer, A. (2007). Integration of colour and textural information in multivariate image analysis: defect detection and classification issues. Journal of Chemometrics, 21(1-2), 10-23. doi:10.1002/cem.1026

Prats-Montalbán J Control estadístico de procesos mediante análisis multivariante de imágenes Ph.D. Thesis 2005

López, F., Prats, J. M., Ferrer, A., & Valiente, J. M. (2006). Defect Detection in Random Colour Textures Using the MIA T2 Defect Maps. Image Analysis and Recognition, 752-763. doi:10.1007/11867661_68

Ho, P.-G. (Ed.). (2011). Image Segmentation. doi:10.5772/628

Pal, N. R., & Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition, 26(9), 1277-1294. doi:10.1016/0031-3203(93)90135-j

MATLAB R2012b (8.0.0.783), Natick, USA: The Mathworks Inc

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37-52. doi:10.1016/0169-7439(87)80084-9

Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9

Cao, D.-S., Liang, Y.-Z., Xu, Q.-S., Hu, Q.-N., Zhang, L.-X., & Fu, G.-H. (2011). Exploring nonlinear relationships in chemical data using kernel-based methods. Chemometrics and Intelligent Laboratory Systems, 107(1), 106-115. doi:10.1016/j.chemolab.2011.02.004

Vitale, R., de Noord, O. E., & Ferrer, A. (2015). Pseudo-sample based contribution plots: innovative tools for fault diagnosis in kernel-based batch process monitoring. Chemometrics and Intelligent Laboratory Systems, 149, 40-52. doi:10.1016/j.chemolab.2015.09.013

Hirschfeld, H. O. (1935). A Connection between Correlation and Contingency. Mathematical Proceedings of the Cambridge Philosophical Society, 31(4), 520-524. doi:10.1017/s0305004100013517

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record