- -

Comprehensive Methodology for Sustainable Power Supply in Emerging Countries

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comprehensive Methodology for Sustainable Power Supply in Emerging Countries

Mostrar el registro completo del ítem

Peñalvo-López, E.; Pérez-Navarro, Á.; Hurtado-Perez, E.; Cárcel Carrasco, FJ. (2019). Comprehensive Methodology for Sustainable Power Supply in Emerging Countries. Sustainability. 11(19):1-22. https://doi.org/10.3390/su11195398

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144798

Ficheros en el ítem

Metadatos del ítem

Título: Comprehensive Methodology for Sustainable Power Supply in Emerging Countries
Autor: Peñalvo-López, Elisa Pérez-Navarro, Ángel Hurtado-Perez, Elias Cárcel Carrasco, Francisco Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques
Universitat Politècnica de València. Instituto de Ingeniería Energética - Institut d'Enginyeria Energètica
Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Fecha difusión:
Resumen:
[EN] Electricity has become one of the main driving forces for development, especially in remote areas where the lack of energy is linked to poverty. Traditionally, in these areas power is supplied by grid extension projects, ...[+]
Palabras clave: Renewable hybrid systems , Power supply , Remote areas , Analytic hierarchy process (AHP)
Derechos de uso: Reconocimiento (by)
Fuente:
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su11195398
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/su11195398
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//GV%2F2017%2F023/
info:eu-repo/grantAgreement/UPV//SP20180248/
Agradecimientos:
This research was funded by Universitat Politecnica de Valencia and Generalitat Valenciana, grant references SP20180248 and GV/2017/023, respectively.
Tipo: Artículo

References

LOKEN, E. (2007). Use of multicriteria decision analysis methods for energy planning problems. Renewable and Sustainable Energy Reviews, 11(7), 1584-1595. doi:10.1016/j.rser.2005.11.005

Cherni, J. A., Dyner, I., Henao, F., Jaramillo, P., Smith, R., & Font, R. O. (2007). Energy supply for sustainable rural livelihoods. A multi-criteria decision-support system. Energy Policy, 35(3), 1493-1504. doi:10.1016/j.enpol.2006.03.026

Gabaldón-Estevan, D., Peñalvo-López, E., & Alfonso Solar, D. (2018). The Spanish Turn against Renewable Energy Development. Sustainability, 10(4), 1208. doi:10.3390/su10041208 [+]
LOKEN, E. (2007). Use of multicriteria decision analysis methods for energy planning problems. Renewable and Sustainable Energy Reviews, 11(7), 1584-1595. doi:10.1016/j.rser.2005.11.005

Cherni, J. A., Dyner, I., Henao, F., Jaramillo, P., Smith, R., & Font, R. O. (2007). Energy supply for sustainable rural livelihoods. A multi-criteria decision-support system. Energy Policy, 35(3), 1493-1504. doi:10.1016/j.enpol.2006.03.026

Gabaldón-Estevan, D., Peñalvo-López, E., & Alfonso Solar, D. (2018). The Spanish Turn against Renewable Energy Development. Sustainability, 10(4), 1208. doi:10.3390/su10041208

Ouyang, W., Cheng, H., Zhang, X., & Yao, L. (2010). Distribution network planning method considering distributed generation for peak cutting. Energy Conversion and Management, 51(12), 2394-2401. doi:10.1016/j.enconman.2010.05.003

Chaurey, A., Ranganathan, M., & Mohanty, P. (2004). Electricity access for geographically disadvantaged rural communities—technology and policy insights. Energy Policy, 32(15), 1693-1705. doi:10.1016/s0301-4215(03)00160-5

CARCEL CARRASCO, F. J., PEÑALVO LOPEZ, E., & DE MURGA, G. (2018). OFICINAS AUTO-SOSTENIBLES PARA LAS AGENCIAS DE AYUDA INTERNACIONAL EN ZONAS GEOGRÁFICAS REMOTAS. DYNA INGENIERIA E INDUSTRIA, 94(1), 272-277. doi:10.6036/8507

Erdinc, O., & Uzunoglu, M. (2012). Optimum design of hybrid renewable energy systems: Overview of different approaches. Renewable and Sustainable Energy Reviews, 16(3), 1412-1425. doi:10.1016/j.rser.2011.11.011

Al-falahi Monaaf D.A., Jayasinghe, S. D. G., & Enshaei, H. (2017). A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system. Energy Conversion and Management, 143, 252-274. doi:10.1016/j.enconman.2017.04.019

Bajpai, P., & Dash, V. (2012). Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renewable and Sustainable Energy Reviews, 16(5), 2926-2939. doi:10.1016/j.rser.2012.02.009

Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.030

Al-Alawi, A., & Islam, S. . (2004). Demand side management for remote area power supply systems incorporating solar irradiance model. Renewable Energy, 29(13), 2027-2036. doi:10.1016/j.renene.2004.03.006

Ardakani, F. J., & Ardehali, M. M. (2014). Novel effects of demand side management data on accuracy of electrical energy consumption modeling and long-term forecasting. Energy Conversion and Management, 78, 745-752. doi:10.1016/j.enconman.2013.11.019

Kavrakoǧlu, I., & Kiziltan, G. (1983). Multiobjective strategies in power systems planning. European Journal of Operational Research, 12(2), 159-170. doi:10.1016/0377-2217(83)90219-9

Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning—A review. Renewable and Sustainable Energy Reviews, 8(4), 365-381. doi:10.1016/j.rser.2003.12.007

Kabak, M., & Dağdeviren, M. (2014). Prioritization of renewable energy sources for Turkey by using a hybrid MCDM methodology. Energy Conversion and Management, 79, 25-33. doi:10.1016/j.enconman.2013.11.036

Peñalvo-López, E., Cárcel-Carrasco, F., Devece, C., & Morcillo, A. (2017). A Methodology for Analysing Sustainability in Energy Scenarios. Sustainability, 9(9), 1590. doi:10.3390/su9091590

HOMER Pro® Microgrid Software, the Micro-Power Optimization Model; HOMER Pro 3.13, HOMER Energyhttps://www.homerenergy.com/products/pro/index.html

Super Decisions Softwarehttps://www.superdecisions.com/

ENRGYPLAN Advanced Energy System Analysishttp://www.energyplan.eu/

LEAP Code Energy Analysishttps://www.energycommunity.org/default.asp?action=introduction

Rodríguez-García, Ribó-Pérez, Álvarez-Bel, & Peñalvo-López. (2019). Novel Conceptual Architecture for the Next-Generation Electricity Markets to Enhance a Large Penetration of Renewable Energy. Energies, 12(13), 2605. doi:10.3390/en12132605

Huld, T., Müller, R., & Gambardella, A. (2012). A new solar radiation database for estimating PV performance in Europe and Africa. Solar Energy, 86(6), 1803-1815. doi:10.1016/j.solener.2012.03.006

Fischer, G., & Schrattenholzer, L. (2001). Global bioenergy potentials through 2050. Biomass and Bioenergy, 20(3), 151-159. doi:10.1016/s0961-9534(00)00074-x

Hurtado, E., Peñalvo-López, E., Pérez-Navarro, Á., Vargas, C., & Alfonso, D. (2015). Optimization of a hybrid renewable system for high feasibility application in non-connected zones. Applied Energy, 155, 308-314. doi:10.1016/j.apenergy.2015.05.097

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem