Mostrar el registro sencillo del ítem
dc.contributor.author | Peñalvo-López, Elisa | es_ES |
dc.contributor.author | Pérez-Navarro, Ángel | es_ES |
dc.contributor.author | Hurtado-Perez, Elias | es_ES |
dc.contributor.author | Cárcel Carrasco, Francisco Javier | es_ES |
dc.date.accessioned | 2020-06-02T05:36:36Z | |
dc.date.available | 2020-06-02T05:36:36Z | |
dc.date.issued | 2019-09-29 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144798 | |
dc.description.abstract | [EN] Electricity has become one of the main driving forces for development, especially in remote areas where the lack of energy is linked to poverty. Traditionally, in these areas power is supplied by grid extension projects, which are expensive, or stand-alone systems based on fossil fuels. An actual alternative to these solutions is community micro-grid projects based on distributed renewable energy sources. However, these solutions need to introduce a holistic approach in order to be successfully implemented in real cases. The main purpose of this research work is the definition and development of a comprehensive methodology to encourage the use of decentralized renewable power systems to provide power supply to non-electrified areas. The methodology follows a top-down approach. Its main novelty is that it interlinks a macro and micro analysis dimension, considering not only the energy context of the country where the area under study is located and its development towards a sustainable scenario; but also the potential of renewable power generation, the demand side management opportunities and the socio-economic aspects involved in the final decision on what renewable energy solution would be the most appropriate for the considered location. The implementation of this methodology provides isolated areas a tool for sustainable energy development based on an environmentally friendly and socially participatory approach. Results of implementing the methodology in a case study showed the importance of introducing a holistic approach in supplying power energy to isolated areas, stating the need for involving all the different stakeholders in the decision-making process. Despite final raking on sustainable power supply solutions may vary from one area to another, the implementation of the methodology follows the same procedure, which makes it an inestimable tool for governments, private investors and local communities. | es_ES |
dc.description.sponsorship | This research was funded by Universitat Politecnica de Valencia and Generalitat Valenciana, grant references SP20180248 and GV/2017/023, respectively. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sustainability | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Renewable hybrid systems | es_ES |
dc.subject | Power supply | es_ES |
dc.subject | Remote areas | es_ES |
dc.subject | Analytic hierarchy process (AHP) | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.subject.classification | CONSTRUCCIONES ARQUITECTONICAS | es_ES |
dc.title | Comprehensive Methodology for Sustainable Power Supply in Emerging Countries | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/su11195398 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2017%2F023/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20180248/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ingeniería Energética - Institut d'Enginyeria Energètica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Peñalvo-López, E.; Pérez-Navarro, Á.; Hurtado-Perez, E.; Cárcel Carrasco, FJ. (2019). Comprehensive Methodology for Sustainable Power Supply in Emerging Countries. Sustainability. 11(19):1-22. https://doi.org/10.3390/su11195398 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/su11195398 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 19 | es_ES |
dc.identifier.eissn | 2071-1050 | es_ES |
dc.relation.pasarela | S\392492 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | LOKEN, E. (2007). Use of multicriteria decision analysis methods for energy planning problems. Renewable and Sustainable Energy Reviews, 11(7), 1584-1595. doi:10.1016/j.rser.2005.11.005 | es_ES |
dc.description.references | Cherni, J. A., Dyner, I., Henao, F., Jaramillo, P., Smith, R., & Font, R. O. (2007). Energy supply for sustainable rural livelihoods. A multi-criteria decision-support system. Energy Policy, 35(3), 1493-1504. doi:10.1016/j.enpol.2006.03.026 | es_ES |
dc.description.references | Gabaldón-Estevan, D., Peñalvo-López, E., & Alfonso Solar, D. (2018). The Spanish Turn against Renewable Energy Development. Sustainability, 10(4), 1208. doi:10.3390/su10041208 | es_ES |
dc.description.references | Ouyang, W., Cheng, H., Zhang, X., & Yao, L. (2010). Distribution network planning method considering distributed generation for peak cutting. Energy Conversion and Management, 51(12), 2394-2401. doi:10.1016/j.enconman.2010.05.003 | es_ES |
dc.description.references | Chaurey, A., Ranganathan, M., & Mohanty, P. (2004). Electricity access for geographically disadvantaged rural communities—technology and policy insights. Energy Policy, 32(15), 1693-1705. doi:10.1016/s0301-4215(03)00160-5 | es_ES |
dc.description.references | CARCEL CARRASCO, F. J., PEÑALVO LOPEZ, E., & DE MURGA, G. (2018). OFICINAS AUTO-SOSTENIBLES PARA LAS AGENCIAS DE AYUDA INTERNACIONAL EN ZONAS GEOGRÁFICAS REMOTAS. DYNA INGENIERIA E INDUSTRIA, 94(1), 272-277. doi:10.6036/8507 | es_ES |
dc.description.references | Erdinc, O., & Uzunoglu, M. (2012). Optimum design of hybrid renewable energy systems: Overview of different approaches. Renewable and Sustainable Energy Reviews, 16(3), 1412-1425. doi:10.1016/j.rser.2011.11.011 | es_ES |
dc.description.references | Al-falahi Monaaf D.A., Jayasinghe, S. D. G., & Enshaei, H. (2017). A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system. Energy Conversion and Management, 143, 252-274. doi:10.1016/j.enconman.2017.04.019 | es_ES |
dc.description.references | Bajpai, P., & Dash, V. (2012). Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renewable and Sustainable Energy Reviews, 16(5), 2926-2939. doi:10.1016/j.rser.2012.02.009 | es_ES |
dc.description.references | Pérez-Navarro, A., Alfonso, D., Ariza, H. E., Cárcel, J., Correcher, A., Escrivá-Escrivá, G., … Vargas, C. (2016). Experimental verification of hybrid renewable systems as feasible energy sources. Renewable Energy, 86, 384-391. doi:10.1016/j.renene.2015.08.030 | es_ES |
dc.description.references | Al-Alawi, A., & Islam, S. . (2004). Demand side management for remote area power supply systems incorporating solar irradiance model. Renewable Energy, 29(13), 2027-2036. doi:10.1016/j.renene.2004.03.006 | es_ES |
dc.description.references | Ardakani, F. J., & Ardehali, M. M. (2014). Novel effects of demand side management data on accuracy of electrical energy consumption modeling and long-term forecasting. Energy Conversion and Management, 78, 745-752. doi:10.1016/j.enconman.2013.11.019 | es_ES |
dc.description.references | Kavrakoǧlu, I., & Kiziltan, G. (1983). Multiobjective strategies in power systems planning. European Journal of Operational Research, 12(2), 159-170. doi:10.1016/0377-2217(83)90219-9 | es_ES |
dc.description.references | Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning—A review. Renewable and Sustainable Energy Reviews, 8(4), 365-381. doi:10.1016/j.rser.2003.12.007 | es_ES |
dc.description.references | Kabak, M., & Dağdeviren, M. (2014). Prioritization of renewable energy sources for Turkey by using a hybrid MCDM methodology. Energy Conversion and Management, 79, 25-33. doi:10.1016/j.enconman.2013.11.036 | es_ES |
dc.description.references | Peñalvo-López, E., Cárcel-Carrasco, F., Devece, C., & Morcillo, A. (2017). A Methodology for Analysing Sustainability in Energy Scenarios. Sustainability, 9(9), 1590. doi:10.3390/su9091590 | es_ES |
dc.description.references | HOMER Pro® Microgrid Software, the Micro-Power Optimization Model; HOMER Pro 3.13, HOMER Energyhttps://www.homerenergy.com/products/pro/index.html | es_ES |
dc.description.references | Super Decisions Softwarehttps://www.superdecisions.com/ | es_ES |
dc.description.references | ENRGYPLAN Advanced Energy System Analysishttp://www.energyplan.eu/ | es_ES |
dc.description.references | LEAP Code Energy Analysishttps://www.energycommunity.org/default.asp?action=introduction | es_ES |
dc.description.references | Rodríguez-García, Ribó-Pérez, Álvarez-Bel, & Peñalvo-López. (2019). Novel Conceptual Architecture for the Next-Generation Electricity Markets to Enhance a Large Penetration of Renewable Energy. Energies, 12(13), 2605. doi:10.3390/en12132605 | es_ES |
dc.description.references | Huld, T., Müller, R., & Gambardella, A. (2012). A new solar radiation database for estimating PV performance in Europe and Africa. Solar Energy, 86(6), 1803-1815. doi:10.1016/j.solener.2012.03.006 | es_ES |
dc.description.references | Fischer, G., & Schrattenholzer, L. (2001). Global bioenergy potentials through 2050. Biomass and Bioenergy, 20(3), 151-159. doi:10.1016/s0961-9534(00)00074-x | es_ES |
dc.description.references | Hurtado, E., Peñalvo-López, E., Pérez-Navarro, Á., Vargas, C., & Alfonso, D. (2015). Optimization of a hybrid renewable system for high feasibility application in non-connected zones. Applied Energy, 155, 308-314. doi:10.1016/j.apenergy.2015.05.097 | es_ES |