- -

A Tabu List-Based Algorithm for Capacitated Multilevel Lot-Sizing with Alternate Bills of Materials and Co-Production Environments

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A Tabu List-Based Algorithm for Capacitated Multilevel Lot-Sizing with Alternate Bills of Materials and Co-Production Environments

Show full item record

Romero-Conrado, AR.; Coronado-Hernandez, J.; Rius-Sorolla, G.; García Sabater, JP. (2019). A Tabu List-Based Algorithm for Capacitated Multilevel Lot-Sizing with Alternate Bills of Materials and Co-Production Environments. Applied Sciences. 9(7):1-17. https://doi.org/10.3390/app9071464

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144804

Files in this item

Item Metadata

Title: A Tabu List-Based Algorithm for Capacitated Multilevel Lot-Sizing with Alternate Bills of Materials and Co-Production Environments
Author: Romero-Conrado, Alfonso Rafael Coronado-Hernandez, Jairo Rius-Sorolla, Gregorio García Sabater, José Pedro
UPV Unit: Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses
Issued date:
Abstract:
[EN] The definition of lot sizes represents one of the most important decisions in production planning. Lot-sizing turns into an increasingly complex set of decisions that requires efficient solution approaches, in response ...[+]
Subjects: Materials requirements planning , Lot sizing , Flexible manufacturing systems , Heuristic algorithms , Operations research , Tabu list , GMOP , Alternate bill of materials , Coproduction
Copyrigths: Reconocimiento (by)
Source:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app9071464
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/app9071464
Thanks:
This paper shows the results of the project entitled "Algoritmo heuristico basado en listas tabu para la planificacion de la produccion en sistemas multinivel con listas de materiales alternativas y entornos de coproduccion" ...[+]
Type: Artículo

References

Karimi, B., Fatemi Ghomi, S. M. T., & Wilson, J. M. (2003). The capacitated lot sizing problem: a review of models and algorithms. Omega, 31(5), 365-378. doi:10.1016/s0305-0483(03)00059-8

Martí, R., & Reinelt, G. (2010). Heuristic Methods. Applied Mathematical Sciences, 17-40. doi:10.1007/978-3-642-16729-4_2

Barany, I., Van Roy, T. J., & Wolsey, L. A. (1984). Strong Formulations for Multi-Item Capacitated Lot Sizing. Management Science, 30(10), 1255-1261. doi:10.1287/mnsc.30.10.1255 [+]
Karimi, B., Fatemi Ghomi, S. M. T., & Wilson, J. M. (2003). The capacitated lot sizing problem: a review of models and algorithms. Omega, 31(5), 365-378. doi:10.1016/s0305-0483(03)00059-8

Martí, R., & Reinelt, G. (2010). Heuristic Methods. Applied Mathematical Sciences, 17-40. doi:10.1007/978-3-642-16729-4_2

Barany, I., Van Roy, T. J., & Wolsey, L. A. (1984). Strong Formulations for Multi-Item Capacitated Lot Sizing. Management Science, 30(10), 1255-1261. doi:10.1287/mnsc.30.10.1255

Eppen, G. D., & Martin, R. K. (1987). Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable Redefinition. Operations Research, 35(6), 832-848. doi:10.1287/opre.35.6.832

Maes, J., McClain, J. O., & Van Wassenhove, L. N. (1991). Multilevel capacitated lotsizing complexity and LP-based heuristics. European Journal of Operational Research, 53(2), 131-148. doi:10.1016/0377-2217(91)90130-n

Buschkühl, L., Sahling, F., Helber, S., & Tempelmeier, H. (2008). Dynamic capacitated lot-sizing problems: a classification and review of solution approaches. OR Spectrum, 32(2), 231-261. doi:10.1007/s00291-008-0150-7

Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling — Survey and extensions. European Journal of Operational Research, 99(2), 221-235. doi:10.1016/s0377-2217(97)00030-1

Glock, C. H., Grosse, E. H., & Ries, J. M. (2014). The lot sizing problem: A tertiary study. International Journal of Production Economics, 155, 39-51. doi:10.1016/j.ijpe.2013.12.009

KUIK, R., SALOMON, M., VAN WASSENHOVE, L. N., & MAES, J. (1993). LINEAR PROGRAMMING, SIMULATED ANNEALING AND TABU SEARCH HEURISTICS FOR LOTSIZING IN BOTTLENECK ASSEMBLY SYSTEMS. IIE Transactions, 25(1), 62-72. doi:10.1080/07408179308964266

Standard Price List—AMPLhttps://ampl.com/products/standard-price-list/

Seeanner, F., Almada-Lobo, B., & Meyr, H. (2013). Combining the principles of variable neighborhood decomposition search and the fix&optimize heuristic to solve multi-level lot-sizing and scheduling problems. Computers & Operations Research, 40(1), 303-317. doi:10.1016/j.cor.2012.07.002

Hung, Y.-F., & Chien, K.-L. (2000). A multi-class multi-level capacitated lot sizing model. Journal of the Operational Research Society, 51(11), 1309-1318. doi:10.1057/palgrave.jors.2601026

Kang, Y., Albey, E., & Uzsoy, R. (2018). Rounding heuristics for multiple product dynamic lot-sizing in the presence of queueing behavior. Computers & Operations Research, 100, 54-65. doi:10.1016/j.cor.2018.07.019

BERRETTA, R., FRANÇA, P. M., & ARMENTANO, V. A. (2005). METAHEURISTIC APPROACHES FOR THE MULTILEVEL RESOURCE-CONSTRAINED LOT-SIZING PROBLEM WITH SETUP AND LEAD TIMES. Asia-Pacific Journal of Operational Research, 22(02), 261-286. doi:10.1142/s0217595905000510

KIMMS, A. (1996). Competitive methods for multi-level lot sizing and scheduling: tabu search and randomized regrets. International Journal of Production Research, 34(8), 2279-2298. doi:10.1080/00207549608905025

Sabater, J. P. G., Maheut, J., & Garcia, J. A. M. (2013). A new formulation technique to model materials and operations planning: the generic materials and operations planning (GMOP) problem. European J. of Industrial Engineering, 7(2), 119. doi:10.1504/ejie.2013.052572

Maheut, J., & Sabater, J. P. G. (2013). Algorithm for complete enumeration based on a stroke graph to solve the supply network configuration and operations scheduling problem. Journal of Industrial Engineering and Management, 6(3). doi:10.3926/jiem.550

Rius-Sorolla, G., Maheut, J., Coronado-Hernandez, J. R., & Garcia-Sabater, J. P. (2018). Lagrangian relaxation of the generic materials and operations planning model. Central European Journal of Operations Research, 28(1), 105-123. doi:10.1007/s10100-018-0593-0

Maheut, J., Garcia-Sabater, J. P., & Mula, J. (2012). The Generic Materials and Operations Planning (GMOP) Problem Solved Iteratively: A Case Study in Multi-site Context. IFIP Advances in Information and Communication Technology, 66-73. doi:10.1007/978-3-642-33980-6_8

Maheut, J. P. D. (s. f.). Modelos y Algoritmos Basados en el Concepto Stroke para la Planificación y Programación de Operaciones con Alternativas en Redes de Suministro. doi:10.4995/thesis/10251/29290

Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing, 1(3), 190-206. doi:10.1287/ijoc.1.3.190

Glover, F., Taillard, E., & Taillard, E. (1993). A user’s guide to tabu search. Annals of Operations Research, 41(1), 1-28. doi:10.1007/bf02078647

Chelouah, R., & Siarry, P. (2000). Tabu Search applied to global optimization. European Journal of Operational Research, 123(2), 256-270. doi:10.1016/s0377-2217(99)00255-6

Raza, S. A., Akgunduz, A., & Chen, M. Y. (2006). A tabu search algorithm for solving economic lot scheduling problem. Journal of Heuristics, 12(6), 413-426. doi:10.1007/s10732-006-6017-7

Cesaret, B., Oğuz, C., & Sibel Salman, F. (2012). A tabu search algorithm for order acceptance and scheduling. Computers & Operations Research, 39(6), 1197-1205. doi:10.1016/j.cor.2010.09.018

Li, X., Baki, F., Tian, P., & Chaouch, B. A. (2014). A robust block-chain based tabu search algorithm for the dynamic lot sizing problem with product returns and remanufacturing. Omega, 42(1), 75-87. doi:10.1016/j.omega.2013.03.003

Li, J., & Pan, Q. (2015). Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm. Information Sciences, 316, 487-502. doi:10.1016/j.ins.2014.10.009

Hindi, K. S. (1995). Solving the single-item, capacitated dynamic lot-sizing problem with startup and reservation costs by tabu search. Computers & Industrial Engineering, 28(4), 701-707. doi:10.1016/0360-8352(95)00027-x

Hindi, K. S. (1996). Solving the CLSP by a Tabu Search Heuristic. Journal of the Operational Research Society, 47(1), 151-161. doi:10.1057/jors.1996.13

Gopalakrishnan, M., Ding, K., Bourjolly, J.-M., & Mohan, S. (2001). A Tabu-Search Heuristic for the Capacitated Lot-Sizing Problem with Set-up Carryover. Management Science, 47(6), 851-863. doi:10.1287/mnsc.47.6.851.9813

Glover, F. (1990). Tabu Search—Part II. ORSA Journal on Computing, 2(1), 4-32. doi:10.1287/ijoc.2.1.4

Overview for Create General Full Factorial Designhttps://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/doe/how-to/factorial/create-factorial-design/create-general-full-factorial/before-you-start/overview/

Perttunen, J. (1994). On the Significance of the Initial Solution in Travelling Salesman Heuristics. Journal of the Operational Research Society, 45(10), 1131-1140. doi:10.1057/jors.1994.183

Elaziz, M. A., & Mirjalili, S. (2019). A hyper-heuristic for improving the initial population of whale optimization algorithm. Knowledge-Based Systems, 172, 42-63. doi:10.1016/j.knosys.2019.02.010

Chen, C.-F., Wu, M.-C., & Lin, K.-H. (2013). Effect of solution representations on Tabu search in scheduling applications. Computers & Operations Research, 40(12), 2817-2825. doi:10.1016/j.cor.2013.06.003

Tabu List Based Algorithm Datasetshttps://github.com/alfonsoromeroc/tlba-gmop

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record