Mostrar el registro sencillo del ítem
dc.contributor.author | Romero-Conrado, Alfonso Rafael | es_ES |
dc.contributor.author | Coronado-Hernandez, Jairo | es_ES |
dc.contributor.author | Rius-Sorolla, Gregorio | es_ES |
dc.contributor.author | García Sabater, José Pedro | es_ES |
dc.date.accessioned | 2020-06-02T05:36:47Z | |
dc.date.available | 2020-06-02T05:36:47Z | |
dc.date.issued | 2019-04-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144804 | |
dc.description.abstract | [EN] The definition of lot sizes represents one of the most important decisions in production planning. Lot-sizing turns into an increasingly complex set of decisions that requires efficient solution approaches, in response to the time-consuming exact methods (LP, MIP). This paper aims to propose a Tabu list-based algorithm (TLBA) as an alternative to the Generic Materials and Operations Planning (GMOP) model. The algorithm considers a multi-level, multi-item planning structure. It is initialized using a lot-for-lot (LxL) method and candidate solutions are evaluated through an iterative Material Requirements Planning (MRP) procedure. Three different sizes of test instances are defined and better results are obtained in the large and medium-size problems, with minimum average gaps close to 10.5%. | es_ES |
dc.description.sponsorship | This paper shows the results of the project entitled "Algoritmo heuristico basado en listas tabu para la planificacion de la produccion en sistemas multinivel con listas de materiales alternativas y entornos de coproduccion" supported by Universidad de la Costa and Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Materials requirements planning | es_ES |
dc.subject | Lot sizing | es_ES |
dc.subject | Flexible manufacturing systems | es_ES |
dc.subject | Heuristic algorithms | es_ES |
dc.subject | Operations research | es_ES |
dc.subject | Tabu list | es_ES |
dc.subject | GMOP | es_ES |
dc.subject | Alternate bill of materials | es_ES |
dc.subject | Coproduction | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | A Tabu List-Based Algorithm for Capacitated Multilevel Lot-Sizing with Alternate Bills of Materials and Co-Production Environments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app9071464 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Romero-Conrado, AR.; Coronado-Hernandez, J.; Rius-Sorolla, G.; García Sabater, JP. (2019). A Tabu List-Based Algorithm for Capacitated Multilevel Lot-Sizing with Alternate Bills of Materials and Co-Production Environments. Applied Sciences. 9(7):1-17. https://doi.org/10.3390/app9071464 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app9071464 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\382333 | es_ES |
dc.contributor.funder | Universidad de la Costa | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.description.references | Karimi, B., Fatemi Ghomi, S. M. T., & Wilson, J. M. (2003). The capacitated lot sizing problem: a review of models and algorithms. Omega, 31(5), 365-378. doi:10.1016/s0305-0483(03)00059-8 | es_ES |
dc.description.references | Martí, R., & Reinelt, G. (2010). Heuristic Methods. Applied Mathematical Sciences, 17-40. doi:10.1007/978-3-642-16729-4_2 | es_ES |
dc.description.references | Barany, I., Van Roy, T. J., & Wolsey, L. A. (1984). Strong Formulations for Multi-Item Capacitated Lot Sizing. Management Science, 30(10), 1255-1261. doi:10.1287/mnsc.30.10.1255 | es_ES |
dc.description.references | Eppen, G. D., & Martin, R. K. (1987). Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable Redefinition. Operations Research, 35(6), 832-848. doi:10.1287/opre.35.6.832 | es_ES |
dc.description.references | Maes, J., McClain, J. O., & Van Wassenhove, L. N. (1991). Multilevel capacitated lotsizing complexity and LP-based heuristics. European Journal of Operational Research, 53(2), 131-148. doi:10.1016/0377-2217(91)90130-n | es_ES |
dc.description.references | Buschkühl, L., Sahling, F., Helber, S., & Tempelmeier, H. (2008). Dynamic capacitated lot-sizing problems: a classification and review of solution approaches. OR Spectrum, 32(2), 231-261. doi:10.1007/s00291-008-0150-7 | es_ES |
dc.description.references | Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling — Survey and extensions. European Journal of Operational Research, 99(2), 221-235. doi:10.1016/s0377-2217(97)00030-1 | es_ES |
dc.description.references | Glock, C. H., Grosse, E. H., & Ries, J. M. (2014). The lot sizing problem: A tertiary study. International Journal of Production Economics, 155, 39-51. doi:10.1016/j.ijpe.2013.12.009 | es_ES |
dc.description.references | KUIK, R., SALOMON, M., VAN WASSENHOVE, L. N., & MAES, J. (1993). LINEAR PROGRAMMING, SIMULATED ANNEALING AND TABU SEARCH HEURISTICS FOR LOTSIZING IN BOTTLENECK ASSEMBLY SYSTEMS. IIE Transactions, 25(1), 62-72. doi:10.1080/07408179308964266 | es_ES |
dc.description.references | Standard Price List—AMPLhttps://ampl.com/products/standard-price-list/ | es_ES |
dc.description.references | Seeanner, F., Almada-Lobo, B., & Meyr, H. (2013). Combining the principles of variable neighborhood decomposition search and the fix&optimize heuristic to solve multi-level lot-sizing and scheduling problems. Computers & Operations Research, 40(1), 303-317. doi:10.1016/j.cor.2012.07.002 | es_ES |
dc.description.references | Hung, Y.-F., & Chien, K.-L. (2000). A multi-class multi-level capacitated lot sizing model. Journal of the Operational Research Society, 51(11), 1309-1318. doi:10.1057/palgrave.jors.2601026 | es_ES |
dc.description.references | Kang, Y., Albey, E., & Uzsoy, R. (2018). Rounding heuristics for multiple product dynamic lot-sizing in the presence of queueing behavior. Computers & Operations Research, 100, 54-65. doi:10.1016/j.cor.2018.07.019 | es_ES |
dc.description.references | BERRETTA, R., FRANÇA, P. M., & ARMENTANO, V. A. (2005). METAHEURISTIC APPROACHES FOR THE MULTILEVEL RESOURCE-CONSTRAINED LOT-SIZING PROBLEM WITH SETUP AND LEAD TIMES. Asia-Pacific Journal of Operational Research, 22(02), 261-286. doi:10.1142/s0217595905000510 | es_ES |
dc.description.references | KIMMS, A. (1996). Competitive methods for multi-level lot sizing and scheduling: tabu search and randomized regrets. International Journal of Production Research, 34(8), 2279-2298. doi:10.1080/00207549608905025 | es_ES |
dc.description.references | Sabater, J. P. G., Maheut, J., & Garcia, J. A. M. (2013). A new formulation technique to model materials and operations planning: the generic materials and operations planning (GMOP) problem. European J. of Industrial Engineering, 7(2), 119. doi:10.1504/ejie.2013.052572 | es_ES |
dc.description.references | Maheut, J., & Sabater, J. P. G. (2013). Algorithm for complete enumeration based on a stroke graph to solve the supply network configuration and operations scheduling problem. Journal of Industrial Engineering and Management, 6(3). doi:10.3926/jiem.550 | es_ES |
dc.description.references | Rius-Sorolla, G., Maheut, J., Coronado-Hernandez, J. R., & Garcia-Sabater, J. P. (2018). Lagrangian relaxation of the generic materials and operations planning model. Central European Journal of Operations Research, 28(1), 105-123. doi:10.1007/s10100-018-0593-0 | es_ES |
dc.description.references | Maheut, J., Garcia-Sabater, J. P., & Mula, J. (2012). The Generic Materials and Operations Planning (GMOP) Problem Solved Iteratively: A Case Study in Multi-site Context. IFIP Advances in Information and Communication Technology, 66-73. doi:10.1007/978-3-642-33980-6_8 | es_ES |
dc.description.references | Maheut, J. P. D. (s. f.). Modelos y Algoritmos Basados en el Concepto Stroke para la Planificación y Programación de Operaciones con Alternativas en Redes de Suministro. doi:10.4995/thesis/10251/29290 | es_ES |
dc.description.references | Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing, 1(3), 190-206. doi:10.1287/ijoc.1.3.190 | es_ES |
dc.description.references | Glover, F., Taillard, E., & Taillard, E. (1993). A user’s guide to tabu search. Annals of Operations Research, 41(1), 1-28. doi:10.1007/bf02078647 | es_ES |
dc.description.references | Chelouah, R., & Siarry, P. (2000). Tabu Search applied to global optimization. European Journal of Operational Research, 123(2), 256-270. doi:10.1016/s0377-2217(99)00255-6 | es_ES |
dc.description.references | Raza, S. A., Akgunduz, A., & Chen, M. Y. (2006). A tabu search algorithm for solving economic lot scheduling problem. Journal of Heuristics, 12(6), 413-426. doi:10.1007/s10732-006-6017-7 | es_ES |
dc.description.references | Cesaret, B., Oğuz, C., & Sibel Salman, F. (2012). A tabu search algorithm for order acceptance and scheduling. Computers & Operations Research, 39(6), 1197-1205. doi:10.1016/j.cor.2010.09.018 | es_ES |
dc.description.references | Li, X., Baki, F., Tian, P., & Chaouch, B. A. (2014). A robust block-chain based tabu search algorithm for the dynamic lot sizing problem with product returns and remanufacturing. Omega, 42(1), 75-87. doi:10.1016/j.omega.2013.03.003 | es_ES |
dc.description.references | Li, J., & Pan, Q. (2015). Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm. Information Sciences, 316, 487-502. doi:10.1016/j.ins.2014.10.009 | es_ES |
dc.description.references | Hindi, K. S. (1995). Solving the single-item, capacitated dynamic lot-sizing problem with startup and reservation costs by tabu search. Computers & Industrial Engineering, 28(4), 701-707. doi:10.1016/0360-8352(95)00027-x | es_ES |
dc.description.references | Hindi, K. S. (1996). Solving the CLSP by a Tabu Search Heuristic. Journal of the Operational Research Society, 47(1), 151-161. doi:10.1057/jors.1996.13 | es_ES |
dc.description.references | Gopalakrishnan, M., Ding, K., Bourjolly, J.-M., & Mohan, S. (2001). A Tabu-Search Heuristic for the Capacitated Lot-Sizing Problem with Set-up Carryover. Management Science, 47(6), 851-863. doi:10.1287/mnsc.47.6.851.9813 | es_ES |
dc.description.references | Glover, F. (1990). Tabu Search—Part II. ORSA Journal on Computing, 2(1), 4-32. doi:10.1287/ijoc.2.1.4 | es_ES |
dc.description.references | Overview for Create General Full Factorial Designhttps://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/doe/how-to/factorial/create-factorial-design/create-general-full-factorial/before-you-start/overview/ | es_ES |
dc.description.references | Perttunen, J. (1994). On the Significance of the Initial Solution in Travelling Salesman Heuristics. Journal of the Operational Research Society, 45(10), 1131-1140. doi:10.1057/jors.1994.183 | es_ES |
dc.description.references | Elaziz, M. A., & Mirjalili, S. (2019). A hyper-heuristic for improving the initial population of whale optimization algorithm. Knowledge-Based Systems, 172, 42-63. doi:10.1016/j.knosys.2019.02.010 | es_ES |
dc.description.references | Chen, C.-F., Wu, M.-C., & Lin, K.-H. (2013). Effect of solution representations on Tabu search in scheduling applications. Computers & Operations Research, 40(12), 2817-2825. doi:10.1016/j.cor.2013.06.003 | es_ES |
dc.description.references | Tabu List Based Algorithm Datasetshttps://github.com/alfonsoromeroc/tlba-gmop | es_ES |