- -

A Tabu List-Based Algorithm for Capacitated Multilevel Lot-Sizing with Alternate Bills of Materials and Co-Production Environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Tabu List-Based Algorithm for Capacitated Multilevel Lot-Sizing with Alternate Bills of Materials and Co-Production Environments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero-Conrado, Alfonso Rafael es_ES
dc.contributor.author Coronado-Hernandez, Jairo es_ES
dc.contributor.author Rius-Sorolla, Gregorio es_ES
dc.contributor.author García Sabater, José Pedro es_ES
dc.date.accessioned 2020-06-02T05:36:47Z
dc.date.available 2020-06-02T05:36:47Z
dc.date.issued 2019-04-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144804
dc.description.abstract [EN] The definition of lot sizes represents one of the most important decisions in production planning. Lot-sizing turns into an increasingly complex set of decisions that requires efficient solution approaches, in response to the time-consuming exact methods (LP, MIP). This paper aims to propose a Tabu list-based algorithm (TLBA) as an alternative to the Generic Materials and Operations Planning (GMOP) model. The algorithm considers a multi-level, multi-item planning structure. It is initialized using a lot-for-lot (LxL) method and candidate solutions are evaluated through an iterative Material Requirements Planning (MRP) procedure. Three different sizes of test instances are defined and better results are obtained in the large and medium-size problems, with minimum average gaps close to 10.5%. es_ES
dc.description.sponsorship This paper shows the results of the project entitled "Algoritmo heuristico basado en listas tabu para la planificacion de la produccion en sistemas multinivel con listas de materiales alternativas y entornos de coproduccion" supported by Universidad de la Costa and Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Materials requirements planning es_ES
dc.subject Lot sizing es_ES
dc.subject Flexible manufacturing systems es_ES
dc.subject Heuristic algorithms es_ES
dc.subject Operations research es_ES
dc.subject Tabu list es_ES
dc.subject GMOP es_ES
dc.subject Alternate bill of materials es_ES
dc.subject Coproduction es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title A Tabu List-Based Algorithm for Capacitated Multilevel Lot-Sizing with Alternate Bills of Materials and Co-Production Environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app9071464 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Romero-Conrado, AR.; Coronado-Hernandez, J.; Rius-Sorolla, G.; García Sabater, JP. (2019). A Tabu List-Based Algorithm for Capacitated Multilevel Lot-Sizing with Alternate Bills of Materials and Co-Production Environments. Applied Sciences. 9(7):1-17. https://doi.org/10.3390/app9071464 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app9071464 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\382333 es_ES
dc.contributor.funder Universidad de la Costa
dc.contributor.funder Universitat Politècnica de València
dc.description.references Karimi, B., Fatemi Ghomi, S. M. T., & Wilson, J. M. (2003). The capacitated lot sizing problem: a review of models and algorithms. Omega, 31(5), 365-378. doi:10.1016/s0305-0483(03)00059-8 es_ES
dc.description.references Martí, R., & Reinelt, G. (2010). Heuristic Methods. Applied Mathematical Sciences, 17-40. doi:10.1007/978-3-642-16729-4_2 es_ES
dc.description.references Barany, I., Van Roy, T. J., & Wolsey, L. A. (1984). Strong Formulations for Multi-Item Capacitated Lot Sizing. Management Science, 30(10), 1255-1261. doi:10.1287/mnsc.30.10.1255 es_ES
dc.description.references Eppen, G. D., & Martin, R. K. (1987). Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable Redefinition. Operations Research, 35(6), 832-848. doi:10.1287/opre.35.6.832 es_ES
dc.description.references Maes, J., McClain, J. O., & Van Wassenhove, L. N. (1991). Multilevel capacitated lotsizing complexity and LP-based heuristics. European Journal of Operational Research, 53(2), 131-148. doi:10.1016/0377-2217(91)90130-n es_ES
dc.description.references Buschkühl, L., Sahling, F., Helber, S., & Tempelmeier, H. (2008). Dynamic capacitated lot-sizing problems: a classification and review of solution approaches. OR Spectrum, 32(2), 231-261. doi:10.1007/s00291-008-0150-7 es_ES
dc.description.references Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling — Survey and extensions. European Journal of Operational Research, 99(2), 221-235. doi:10.1016/s0377-2217(97)00030-1 es_ES
dc.description.references Glock, C. H., Grosse, E. H., & Ries, J. M. (2014). The lot sizing problem: A tertiary study. International Journal of Production Economics, 155, 39-51. doi:10.1016/j.ijpe.2013.12.009 es_ES
dc.description.references KUIK, R., SALOMON, M., VAN WASSENHOVE, L. N., & MAES, J. (1993). LINEAR PROGRAMMING, SIMULATED ANNEALING AND TABU SEARCH HEURISTICS FOR LOTSIZING IN BOTTLENECK ASSEMBLY SYSTEMS. IIE Transactions, 25(1), 62-72. doi:10.1080/07408179308964266 es_ES
dc.description.references Standard Price List—AMPLhttps://ampl.com/products/standard-price-list/ es_ES
dc.description.references Seeanner, F., Almada-Lobo, B., & Meyr, H. (2013). Combining the principles of variable neighborhood decomposition search and the fix&optimize heuristic to solve multi-level lot-sizing and scheduling problems. Computers & Operations Research, 40(1), 303-317. doi:10.1016/j.cor.2012.07.002 es_ES
dc.description.references Hung, Y.-F., & Chien, K.-L. (2000). A multi-class multi-level capacitated lot sizing model. Journal of the Operational Research Society, 51(11), 1309-1318. doi:10.1057/palgrave.jors.2601026 es_ES
dc.description.references Kang, Y., Albey, E., & Uzsoy, R. (2018). Rounding heuristics for multiple product dynamic lot-sizing in the presence of queueing behavior. Computers & Operations Research, 100, 54-65. doi:10.1016/j.cor.2018.07.019 es_ES
dc.description.references BERRETTA, R., FRANÇA, P. M., & ARMENTANO, V. A. (2005). METAHEURISTIC APPROACHES FOR THE MULTILEVEL RESOURCE-CONSTRAINED LOT-SIZING PROBLEM WITH SETUP AND LEAD TIMES. Asia-Pacific Journal of Operational Research, 22(02), 261-286. doi:10.1142/s0217595905000510 es_ES
dc.description.references KIMMS, A. (1996). Competitive methods for multi-level lot sizing and scheduling: tabu search and randomized regrets. International Journal of Production Research, 34(8), 2279-2298. doi:10.1080/00207549608905025 es_ES
dc.description.references Sabater, J. P. G., Maheut, J., & Garcia, J. A. M. (2013). A new formulation technique to model materials and operations planning: the generic materials and operations planning (GMOP) problem. European J. of Industrial Engineering, 7(2), 119. doi:10.1504/ejie.2013.052572 es_ES
dc.description.references Maheut, J., & Sabater, J. P. G. (2013). Algorithm for complete enumeration based on a stroke graph to solve the supply network configuration and operations scheduling problem. Journal of Industrial Engineering and Management, 6(3). doi:10.3926/jiem.550 es_ES
dc.description.references Rius-Sorolla, G., Maheut, J., Coronado-Hernandez, J. R., & Garcia-Sabater, J. P. (2018). Lagrangian relaxation of the generic materials and operations planning model. Central European Journal of Operations Research, 28(1), 105-123. doi:10.1007/s10100-018-0593-0 es_ES
dc.description.references Maheut, J., Garcia-Sabater, J. P., & Mula, J. (2012). The Generic Materials and Operations Planning (GMOP) Problem Solved Iteratively: A Case Study in Multi-site Context. IFIP Advances in Information and Communication Technology, 66-73. doi:10.1007/978-3-642-33980-6_8 es_ES
dc.description.references Maheut, J. P. D. (s. f.). Modelos y Algoritmos Basados en el Concepto Stroke para la Planificación y Programación de Operaciones con Alternativas en Redes de Suministro. doi:10.4995/thesis/10251/29290 es_ES
dc.description.references Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing, 1(3), 190-206. doi:10.1287/ijoc.1.3.190 es_ES
dc.description.references Glover, F., Taillard, E., & Taillard, E. (1993). A user’s guide to tabu search. Annals of Operations Research, 41(1), 1-28. doi:10.1007/bf02078647 es_ES
dc.description.references Chelouah, R., & Siarry, P. (2000). Tabu Search applied to global optimization. European Journal of Operational Research, 123(2), 256-270. doi:10.1016/s0377-2217(99)00255-6 es_ES
dc.description.references Raza, S. A., Akgunduz, A., & Chen, M. Y. (2006). A tabu search algorithm for solving economic lot scheduling problem. Journal of Heuristics, 12(6), 413-426. doi:10.1007/s10732-006-6017-7 es_ES
dc.description.references Cesaret, B., Oğuz, C., & Sibel Salman, F. (2012). A tabu search algorithm for order acceptance and scheduling. Computers & Operations Research, 39(6), 1197-1205. doi:10.1016/j.cor.2010.09.018 es_ES
dc.description.references Li, X., Baki, F., Tian, P., & Chaouch, B. A. (2014). A robust block-chain based tabu search algorithm for the dynamic lot sizing problem with product returns and remanufacturing. Omega, 42(1), 75-87. doi:10.1016/j.omega.2013.03.003 es_ES
dc.description.references Li, J., & Pan, Q. (2015). Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm. Information Sciences, 316, 487-502. doi:10.1016/j.ins.2014.10.009 es_ES
dc.description.references Hindi, K. S. (1995). Solving the single-item, capacitated dynamic lot-sizing problem with startup and reservation costs by tabu search. Computers & Industrial Engineering, 28(4), 701-707. doi:10.1016/0360-8352(95)00027-x es_ES
dc.description.references Hindi, K. S. (1996). Solving the CLSP by a Tabu Search Heuristic. Journal of the Operational Research Society, 47(1), 151-161. doi:10.1057/jors.1996.13 es_ES
dc.description.references Gopalakrishnan, M., Ding, K., Bourjolly, J.-M., & Mohan, S. (2001). A Tabu-Search Heuristic for the Capacitated Lot-Sizing Problem with Set-up Carryover. Management Science, 47(6), 851-863. doi:10.1287/mnsc.47.6.851.9813 es_ES
dc.description.references Glover, F. (1990). Tabu Search—Part II. ORSA Journal on Computing, 2(1), 4-32. doi:10.1287/ijoc.2.1.4 es_ES
dc.description.references Overview for Create General Full Factorial Designhttps://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/doe/how-to/factorial/create-factorial-design/create-general-full-factorial/before-you-start/overview/ es_ES
dc.description.references Perttunen, J. (1994). On the Significance of the Initial Solution in Travelling Salesman Heuristics. Journal of the Operational Research Society, 45(10), 1131-1140. doi:10.1057/jors.1994.183 es_ES
dc.description.references Elaziz, M. A., & Mirjalili, S. (2019). A hyper-heuristic for improving the initial population of whale optimization algorithm. Knowledge-Based Systems, 172, 42-63. doi:10.1016/j.knosys.2019.02.010 es_ES
dc.description.references Chen, C.-F., Wu, M.-C., & Lin, K.-H. (2013). Effect of solution representations on Tabu search in scheduling applications. Computers & Operations Research, 40(12), 2817-2825. doi:10.1016/j.cor.2013.06.003 es_ES
dc.description.references Tabu List Based Algorithm Datasetshttps://github.com/alfonsoromeroc/tlba-gmop es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem