- -

Fault Modeling of Graphene Nanoribbon FET Logic Circuits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fault Modeling of Graphene Nanoribbon FET Logic Circuits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gil Tomás, Daniel Antonio es_ES
dc.contributor.author Gracia-Morán, Joaquín es_ES
dc.contributor.author Saiz-Adalid, Luis-J. es_ES
dc.contributor.author Gil, Pedro es_ES
dc.date.accessioned 2020-06-02T05:36:54Z
dc.date.available 2020-06-02T05:36:54Z
dc.date.issued 2019-07-31 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144807
dc.description.abstract [EN] Due to the increasing defect rates in highly scaled complementary metal-oxide-semiconductor (CMOS) devices, and the emergence of alternative nanotechnology devices, reliability challenges are of growing importance. Understanding and controlling the fault mechanisms associated with new materials and structures for both transistors and interconnection is a key issue in novel nanodevices. The graphene nanoribbon field-effect transistor (GNR FET) has revealed itself as a promising technology to design emerging research logic circuits, because of its outstanding potential speed and power properties. This work presents a study of fault causes, mechanisms, and models at the device level, as well as their impact on logic circuits based on GNR FETs. From a literature review of fault causes and mechanisms, fault propagation was analyzed, and fault models were derived for device and logic circuit levels. This study may be helpful for the prevention of faults in the design process of graphene nanodevices. In addition, it can help in the design and evaluation of defect- and fault-tolerant nanoarchitectures based on graphene circuits. Results are compared with other emerging devices, such as carbon nanotube (CNT) FET and nanowire (NW) FET. es_ES
dc.description.sponsorship This work was supported in part by the Spanish Government under the research project TIN2016-81075-R and by Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), under the project 200190032. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Emerging nanodevices es_ES
dc.subject Graphene nanoribbon FET es_ES
dc.subject Defects and variations es_ES
dc.subject Fault models es_ES
dc.subject Logic circuits es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Fault Modeling of Graphene Nanoribbon FET Logic Circuits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics8080851 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//200190032/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-81075-R/ES/MECANISMOS DE ADAPTACION CONFIABLE PARA VEHICULOS AUTONOMOS Y CONECTADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180334/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Gil Tomás, DA.; Gracia-Morán, J.; Saiz-Adalid, L.; Gil, P. (2019). Fault Modeling of Graphene Nanoribbon FET Logic Circuits. Electronics. 8(8):1-18. https://doi.org/10.3390/electronics8080851 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics8080851 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\398479 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references International Technology Roadmap for Semiconductors (ITRS) 2013http://www.itrs2.net/2013-itrs.html es_ES
dc.description.references Schuegraf, K., Abraham, M. C., Brand, A., Naik, M., & Thakur, R. (2013). Semiconductor Logic Technology Innovation to Achieve Sub-10 nm Manufacturing. IEEE Journal of the Electron Devices Society, 1(3), 66-75. doi:10.1109/jeds.2013.2271582 es_ES
dc.description.references International Technology Roadmap for Semiconductors (ITRS) 2015https://bit.ly/2xiiT8P es_ES
dc.description.references Novoselov, K. S. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669. doi:10.1126/science.1102896 es_ES
dc.description.references Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849 es_ES
dc.description.references Wu, Y., Farmer, D. B., Xia, F., & Avouris, P. (2013). Graphene Electronics: Materials, Devices, and Circuits. Proceedings of the IEEE, 101(7), 1620-1637. doi:10.1109/jproc.2013.2260311 es_ES
dc.description.references Choudhury, M. R., Youngki Yoon, Jing Guo, & Mohanram, K. (2011). Graphene Nanoribbon FETs: Technology Exploration for Performance and Reliability. IEEE Transactions on Nanotechnology, 10(4), 727-736. doi:10.1109/tnano.2010.2073718 es_ES
dc.description.references Avouris, P. (2010). Graphene: Electronic and Photonic Properties and Devices. Nano Letters, 10(11), 4285-4294. doi:10.1021/nl102824h es_ES
dc.description.references Banadaki, Y. M., & Srivastava, A. (2015). Scaling Effects on Static Metrics and Switching Attributes of Graphene Nanoribbon FET for Emerging Technology. IEEE Transactions on Emerging Topics in Computing, 3(4), 458-469. doi:10.1109/tetc.2015.2445104 es_ES
dc.description.references Avouris, P., Chen, Z., & Perebeinos, V. (2007). Carbon-based electronics. Nature Nanotechnology, 2(10), 605-615. doi:10.1038/nnano.2007.300 es_ES
dc.description.references Banerjee, S. K., Register, L. F., Tutuc, E., Basu, D., Kim, S., Reddy, D., & MacDonald, A. H. (2010). Graphene for CMOS and Beyond CMOS Applications. Proceedings of the IEEE, 98(12), 2032-2046. doi:10.1109/jproc.2010.2064151 es_ES
dc.description.references Schwierz, F. (2013). Graphene Transistors: Status, Prospects, and Problems. Proceedings of the IEEE, 101(7), 1567-1584. doi:10.1109/jproc.2013.2257633 es_ES
dc.description.references Fregonese, S., Magallo, M., Maneux, C., Happy, H., & Zimmer, T. (2013). Scalable Electrical Compact Modeling for Graphene FET Transistors. IEEE Transactions on Nanotechnology, 12(4), 539-546. doi:10.1109/tnano.2013.2257832 es_ES
dc.description.references Chen, Y.-Y., Sangai, A., Rogachev, A., Gholipour, M., Iannaccone, G., Fiori, G., & Chen, D. (2015). A SPICE-Compatible Model of MOS-Type Graphene Nano-Ribbon Field-Effect Transistors Enabling Gate- and Circuit-Level Delay and Power Analysis Under Process Variation. IEEE Transactions on Nanotechnology, 14(6), 1068-1082. doi:10.1109/tnano.2015.2469647 es_ES
dc.description.references Ferrari, A. C., Bonaccorso, F., Fal’ko, V., Novoselov, K. S., Roche, S., Bøggild, P., … Pugno, N. (2015). Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 7(11), 4598-4810. doi:10.1039/c4nr01600a es_ES
dc.description.references Hong, A. J., Song, E. B., Yu, H. S., Allen, M. J., Kim, J., Fowler, J. D., … Wang, K. L. (2011). Graphene Flash Memory. ACS Nano, 5(10), 7812-7817. doi:10.1021/nn201809k es_ES
dc.description.references Jeng, S.-L., Lu, J.-C., & Wang, K. (2007). A Review of Reliability Research on Nanotechnology. IEEE Transactions on Reliability, 56(3), 401-410. doi:10.1109/tr.2007.903188 es_ES
dc.description.references Srinivasu, B., & Sridharan, K. (2017). A Transistor-Level Probabilistic Approach for Reliability Analysis of Arithmetic Circuits With Applications to Emerging Technologies. IEEE Transactions on Reliability, 66(2), 440-457. doi:10.1109/tr.2016.2642168 es_ES
dc.description.references Teixeira Franco, D., Naviner, J.-F., & Naviner, L. (2006). Yield and reliability issues in nanoelectronic technologies. annals of telecommunications - annales des télécommunications, 61(11-12), 1422-1457. doi:10.1007/bf03219903 es_ES
dc.description.references Lin, Y.-M., Jenkins, K. A., Valdes-Garcia, A., Small, J. P., Farmer, D. B., & Avouris, P. (2009). Operation of Graphene Transistors at Gigahertz Frequencies. Nano Letters, 9(1), 422-426. doi:10.1021/nl803316h es_ES
dc.description.references Liao, L., Lin, Y.-C., Bao, M., Cheng, R., Bai, J., Liu, Y., … Duan, X. (2010). High-speed graphene transistors with a self-aligned nanowire gate. Nature, 467(7313), 305-308. doi:10.1038/nature09405 es_ES
dc.description.references Wang, X., Tabakman, S. M., & Dai, H. (2008). Atomic Layer Deposition of Metal Oxides on Pristine and Functionalized Graphene. Journal of the American Chemical Society, 130(26), 8152-8153. doi:10.1021/ja8023059 es_ES
dc.description.references Geim, A. K. (2009). Graphene: Status and Prospects. Science, 324(5934), 1530-1534. doi:10.1126/science.1158877 es_ES
dc.description.references Mistewicz, K., Nowak, M., Wrzalik, R., Śleziona, J., Wieczorek, J., & Guiseppi-Elie, A. (2016). Ultrasonic processing of SbSI nanowires for their application to gas sensors. Ultrasonics, 69, 67-73. doi:10.1016/j.ultras.2016.04.004 es_ES
dc.description.references Jesionek, M., Nowak, M., Mistewicz, K., Kępińska, M., Stróż, D., Bednarczyk, I., & Paszkiewicz, R. (2018). Sonochemical growth of nanomaterials in carbon nanotube. Ultrasonics, 83, 179-187. doi:10.1016/j.ultras.2017.03.014 es_ES
dc.description.references Chen, X., Seo, D. H., Seo, S., Chung, H., & Wong, H.-S. P. (2012). Graphene Interconnect Lifetime: A Reliability Analysis. IEEE Electron Device Letters, 33(11), 1604-1606. doi:10.1109/led.2012.2211564 es_ES
dc.description.references Wang, Z. F., Zheng, H., Shi, Q. W., & Chen, J. (2009). Emerging nanodevice paradigm. ACM Journal on Emerging Technologies in Computing Systems, 5(1), 1-19. doi:10.1145/1482613.1482616 es_ES
dc.description.references Dong, J., Xiang, G., Xiang-Yang, K., & Jia-Ming, L. (2007). Atomistic Failure Mechanism of Single Wall Carbon Nanotubes with Small Diameters. Chinese Physics Letters, 24(1), 165-168. doi:10.1088/0256-307x/24/1/045 es_ES
dc.description.references Bu, H., Chen, Y., Zou, M., Yi, H., Bi, K., & Ni, Z. (2009). Atomistic simulations of mechanical properties of graphene nanoribbons. Physics Letters A, 373(37), 3359-3362. doi:10.1016/j.physleta.2009.07.048 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem