- -

Simple Endotoxin Detection Using Polymyxin-B-Gated Nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simple Endotoxin Detection Using Polymyxin-B-Gated Nanoparticles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Otri, Ismael es_ES
dc.contributor.author El Sayed, Sameh es_ES
dc.contributor.author Medaglia, Serena es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Aznar, Elena es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.date.accessioned 2020-06-02T05:37:01Z
dc.date.available 2020-06-02T05:37:01Z
dc.date.issued 2019-03-12 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144810
dc.description "This is the peer reviewed version of the following article: Otri, Ismael, Sameh El-Sayed, Serena Medaglia, Ramón Martínez-Máñez, Elena Aznar, and Félix Sancenón. 2019. Simple Endotoxin Detection Using Polymyxin-B&-Gated Nanoparticles. Chemistry A European Journal 25 (15). Wiley: 3770 74. doi:10.1002/chem.201806306, which has been published in final form at https://doi.org/10.1002/chem.201806306. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] A nanodevice based on mesoporous silica nanoparticles with rhodamine B in the pore framework, functionalized with carboxylates on the outer surface and capped with the cationic polymyxin B peptide, was used to selectively detect endotoxin in aqueous solutions with a limit of detection in the picomolar range. es_ES
dc.description.sponsorship The authors thank the Spanish Government (MAT2015 64139-C4-1-R) and the Generalitat Valenciana (PROMETEO2018/024) for their support. I.O. thanks to Erasmus Mundus Programme, Action 2, Lot 1, Syria, for his predoctoral fellowship. S.S. is grateful to Spanish Ministerio de Economia y Competitividad for his Juan de la Cierva contract (FJCI-2015-27201). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Endotoxin es_ES
dc.subject Fluorogenic detection es_ES
dc.subject Gated materials es_ES
dc.subject Mesoporous silica nanoparticles es_ES
dc.subject Polymyxin B es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Simple Endotoxin Detection Using Polymyxin-B-Gated Nanoparticles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201806306 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FJCI-2015-27201/ES/FJCI-2015-27201/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Otri, I.; El Sayed, S.; Medaglia, S.; Martínez-Máñez, R.; Aznar, E.; Sancenón Galarza, F. (2019). Simple Endotoxin Detection Using Polymyxin-B-Gated Nanoparticles. Chemistry - A European Journal. 25(15):3770-3774. https://doi.org/10.1002/chem.201806306 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201806306 es_ES
dc.description.upvformatpinicio 3770 es_ES
dc.description.upvformatpfin 3774 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 15 es_ES
dc.identifier.pmid 30688381 es_ES
dc.relation.pasarela S\385904 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Erasmus+ es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ulevitch, R. J., & Tobias, P. S. (1994). Recognition of endotoxin by cells leading to transmembrane signaling. Current Opinion in Immunology, 6(1), 125-130. doi:10.1016/0952-7915(94)90043-4 es_ES
dc.description.references YOUNG, L. S. (1977). Gram-Negative Rod Bacteremia: Microbiologic, Immunologic, and Therapeutic Considerations. Annals of Internal Medicine, 86(4), 456. doi:10.7326/0003-4819-86-4-456 es_ES
dc.description.references Mueller, M., Lindner, B., Kusumoto, S., Fukase, K., Schromm, A. B., & Seydel, U. (2004). Aggregates Are the Biologically Active Units of Endotoxin. Journal of Biological Chemistry, 279(25), 26307-26313. doi:10.1074/jbc.m401231200 es_ES
dc.description.references Bhattacharyya, J., Biswas, S., & Datta, A. (2004). Mode of Action of Endotoxin: Role of Free Radicals and Antioxidants. Current Medicinal Chemistry, 11(3), 359-368. doi:10.2174/0929867043456098 es_ES
dc.description.references Braun-Fahrländer, C., Riedler, J., Herz, U., Eder, W., Waser, M., Grize, L., … von Mutius, E. (2002). Environmental Exposure to Endotoxin and Its Relation to Asthma in School-Age Children. New England Journal of Medicine, 347(12), 869-877. doi:10.1056/nejmoa020057 es_ES
dc.description.references M. T. Madigan J. M. Martinko J. Parker T. D. Brock Brock Biology of Microorganisms 2000 Prentice Hall Upper Saddle River 793 794 es_ES
dc.description.references Reynolds, S. J., Milton, D. K., Heederik, D., Thorne, P. S., Donham, K. J., Croteau, E. A., … Larsson, L. (2005). Interlaboratory evaluation of endotoxin analyses in agricultural dusts—comparison of LAL assay and mass spectrometry. Journal of Environmental Monitoring, 7(12), 1371. doi:10.1039/b509256f es_ES
dc.description.references Peters, M. (2006). Inhalation of stable dust extract prevents allergen induced airway inflammation and hyperresponsiveness. Thorax, 61(2), 134-139. doi:10.1136/thx.2005.049403 es_ES
dc.description.references Peters, M., Fritz, P., & Bufe, A. (2012). A bioassay for determination of lipopolysaccharide in environmental samples. Innate Immunity, 18(5), 694-699. doi:10.1177/1753425912436590 es_ES
dc.description.references Lourenco, F. R., Botelho, T. D. S., & Pinto, T. D. J. A. (2012). How pH, Temperature, and Time of Incubation Affect False-Positive Responses and Uncertainty of the LAL Gel-Clot Test. PDA Journal of Pharmaceutical Science and Technology, 66(6), 542-546. doi:10.5731/pdajpst.2012.00887 es_ES
dc.description.references Voss, S., Fischer, R., Jung, G., Wiesmüller, K.-H., & Brock, R. (2007). A Fluorescence-Based Synthetic LPS Sensor. Journal of the American Chemical Society, 129(3), 554-561. doi:10.1021/ja065016p es_ES
dc.description.references Wu, J., Zawistowski, A., Ehrmann, M., Yi, T., & Schmuck, C. (2011). Peptide Functionalized Polydiacetylene Liposomes Act as a Fluorescent Turn-On Sensor for Bacterial Lipopolysaccharide. Journal of the American Chemical Society, 133(25), 9720-9723. doi:10.1021/ja204013u es_ES
dc.description.references Zeng, L., Wu, J., Dai, Q., Liu, W., Wang, P., & Lee, C.-S. (2010). Sensing of Bacterial Endotoxin in Aqueous Solution by Supramolecular Assembly of Pyrene Derivative. Organic Letters, 12(18), 4014-4017. doi:10.1021/ol1016228 es_ES
dc.description.references Lan, M., Wu, J., Liu, W., Zhang, W., Ge, J., Zhang, H., … Wang, P. (2012). Copolythiophene-Derived Colorimetric and Fluorometric Sensor for Visually Supersensitive Determination of Lipopolysaccharide. Journal of the American Chemical Society, 134(15), 6685-6694. doi:10.1021/ja211570a es_ES
dc.description.references Dullah, E. C., & Ongkudon, C. M. (2016). Current trends in endotoxin detection and analysis of endotoxin–protein interactions. Critical Reviews in Biotechnology, 37(2), 251-261. doi:10.3109/07388551.2016.1141393 es_ES
dc.description.references Prasad, P., Sachan, S., Suman, S., Swayambhu, G., & Gupta, S. (2018). Regenerative Core–Shell Nanoparticles for Simultaneous Removal and Detection of Endotoxins. Langmuir, 34(25), 7396-7403. doi:10.1021/acs.langmuir.8b00978 es_ES
dc.description.references Jurado-Sánchez, B., Pacheco, M., Rojo, J., & Escarpa, A. (2017). Magnetocatalytic Graphene Quantum Dots Janus Micromotors for Bacterial Endotoxin Detection. Angewandte Chemie International Edition, 56(24), 6957-6961. doi:10.1002/anie.201701396 es_ES
dc.description.references Jurado-Sánchez, B., Pacheco, M., Rojo, J., & Escarpa, A. (2017). Magnetocatalytic Graphene Quantum Dots Janus Micromotors for Bacterial Endotoxin Detection. Angewandte Chemie, 129(24), 7061-7065. doi:10.1002/ange.201701396 es_ES
dc.description.references Ahn, G., Sekhon, S. S., Jeon, Y.-E., Kim, M.-S., Won, K., Kim, Y.-H., & Ahn, J.-Y. (2017). Detection of endotoxins using nanomaterials. Toxicology and Environmental Health Sciences, 9(5), 259-268. doi:10.1007/s13530-017-0330-4 es_ES
dc.description.references Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053 es_ES
dc.description.references Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 es_ES
dc.description.references El Sayed, S., Giménez, C., Aznar, E., Martínez-Máñez, R., Sancenón, F., & Licchelli, M. (2015). Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains. Organic & Biomolecular Chemistry, 13(4), 1017-1021. doi:10.1039/c4ob02083a es_ES
dc.description.references Ribes, À., Santiago-Felipe, S., Aviñó, A., Candela-Noguera, V., Eritja, R., Sancenón, F., … Aznar, E. (2018). Design of oligonucleotide-capped mesoporous silica nanoparticles for the detection of miRNA-145 by duplex and triplex formation. Sensors and Actuators B: Chemical, 277, 598-603. doi:10.1016/j.snb.2018.09.026 es_ES
dc.description.references Ribes, À., Xifré -Pérez, E., Aznar, E., Sancenón, F., Pardo, T., Marsal, L. F., & Martínez-Máñez, R. (2016). Molecular gated nanoporous anodic alumina for the detection of cocaine. Scientific Reports, 6(1). doi:10.1038/srep38649 es_ES
dc.description.references Mondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148 es_ES
dc.description.references Wang, Y., Zhang, D., Liu, W., Zhang, X., Yu, S., Liu, T., … Wang, J. (2014). Facile colorimetric method for simple and rapid detection of endotoxin based on counterion-mediated gold nanorods aggregation. Biosensors and Bioelectronics, 55, 242-248. doi:10.1016/j.bios.2013.12.006 es_ES
dc.description.references Su, W., Cho, M., Nam, J.-D., Choe, W.-S., & Lee, Y. (2013). Aptamer-Assisted Gold Nanoparticles/PEDOT Platform for Ultrasensitive Detection of LPS. Electroanalysis, 25(2), 380-386. doi:10.1002/elan.201200453 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem