- -

Simple Endotoxin Detection Using Polymyxin-B-Gated Nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simple Endotoxin Detection Using Polymyxin-B-Gated Nanoparticles

Mostrar el registro completo del ítem

Otri, I.; El Sayed, S.; Medaglia, S.; Martínez-Máñez, R.; Aznar, E.; Sancenón Galarza, F. (2019). Simple Endotoxin Detection Using Polymyxin-B-Gated Nanoparticles. Chemistry - A European Journal. 25(15):3770-3774. https://doi.org/10.1002/chem.201806306

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144810

Ficheros en el ítem

Metadatos del ítem

Título: Simple Endotoxin Detection Using Polymyxin-B-Gated Nanoparticles
Autor: Otri, Ismael El Sayed, Sameh Medaglia, Serena Martínez-Máñez, Ramón Aznar, Elena Sancenón Galarza, Félix
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] A nanodevice based on mesoporous silica nanoparticles with rhodamine B in the pore framework, functionalized with carboxylates on the outer surface and capped with the cationic polymyxin B peptide, was used to selectively ...[+]
Palabras clave: Endotoxin , Fluorogenic detection , Gated materials , Mesoporous silica nanoparticles , Polymyxin B
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.201806306
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/chem.201806306
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//FJCI-2015-27201/ES/FJCI-2015-27201/
info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/
Descripción: "This is the peer reviewed version of the following article: Otri, Ismael, Sameh El-Sayed, Serena Medaglia, Ramón Martínez-Máñez, Elena Aznar, and Félix Sancenón. 2019. Simple Endotoxin Detection Using Polymyxin-B&-Gated Nanoparticles. Chemistry A European Journal 25 (15). Wiley: 3770 74. doi:10.1002/chem.201806306, which has been published in final form at https://doi.org/10.1002/chem.201806306. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
The authors thank the Spanish Government (MAT2015 64139-C4-1-R) and the Generalitat Valenciana (PROMETEO2018/024) for their support. I.O. thanks to Erasmus Mundus Programme, Action 2, Lot 1, Syria, for his predoctoral ...[+]
Tipo: Artículo

References

Ulevitch, R. J., & Tobias, P. S. (1994). Recognition of endotoxin by cells leading to transmembrane signaling. Current Opinion in Immunology, 6(1), 125-130. doi:10.1016/0952-7915(94)90043-4

YOUNG, L. S. (1977). Gram-Negative Rod Bacteremia: Microbiologic, Immunologic, and Therapeutic Considerations. Annals of Internal Medicine, 86(4), 456. doi:10.7326/0003-4819-86-4-456

Mueller, M., Lindner, B., Kusumoto, S., Fukase, K., Schromm, A. B., & Seydel, U. (2004). Aggregates Are the Biologically Active Units of Endotoxin. Journal of Biological Chemistry, 279(25), 26307-26313. doi:10.1074/jbc.m401231200 [+]
Ulevitch, R. J., & Tobias, P. S. (1994). Recognition of endotoxin by cells leading to transmembrane signaling. Current Opinion in Immunology, 6(1), 125-130. doi:10.1016/0952-7915(94)90043-4

YOUNG, L. S. (1977). Gram-Negative Rod Bacteremia: Microbiologic, Immunologic, and Therapeutic Considerations. Annals of Internal Medicine, 86(4), 456. doi:10.7326/0003-4819-86-4-456

Mueller, M., Lindner, B., Kusumoto, S., Fukase, K., Schromm, A. B., & Seydel, U. (2004). Aggregates Are the Biologically Active Units of Endotoxin. Journal of Biological Chemistry, 279(25), 26307-26313. doi:10.1074/jbc.m401231200

Bhattacharyya, J., Biswas, S., & Datta, A. (2004). Mode of Action of Endotoxin: Role of Free Radicals and Antioxidants. Current Medicinal Chemistry, 11(3), 359-368. doi:10.2174/0929867043456098

Braun-Fahrländer, C., Riedler, J., Herz, U., Eder, W., Waser, M., Grize, L., … von Mutius, E. (2002). Environmental Exposure to Endotoxin and Its Relation to Asthma in School-Age Children. New England Journal of Medicine, 347(12), 869-877. doi:10.1056/nejmoa020057

M. T. Madigan J. M. Martinko J. Parker T. D. Brock Brock Biology of Microorganisms 2000 Prentice Hall Upper Saddle River 793 794

Reynolds, S. J., Milton, D. K., Heederik, D., Thorne, P. S., Donham, K. J., Croteau, E. A., … Larsson, L. (2005). Interlaboratory evaluation of endotoxin analyses in agricultural dusts—comparison of LAL assay and mass spectrometry. Journal of Environmental Monitoring, 7(12), 1371. doi:10.1039/b509256f

Peters, M. (2006). Inhalation of stable dust extract prevents allergen induced airway inflammation and hyperresponsiveness. Thorax, 61(2), 134-139. doi:10.1136/thx.2005.049403

Peters, M., Fritz, P., & Bufe, A. (2012). A bioassay for determination of lipopolysaccharide in environmental samples. Innate Immunity, 18(5), 694-699. doi:10.1177/1753425912436590

Lourenco, F. R., Botelho, T. D. S., & Pinto, T. D. J. A. (2012). How pH, Temperature, and Time of Incubation Affect False-Positive Responses and Uncertainty of the LAL Gel-Clot Test. PDA Journal of Pharmaceutical Science and Technology, 66(6), 542-546. doi:10.5731/pdajpst.2012.00887

Voss, S., Fischer, R., Jung, G., Wiesmüller, K.-H., & Brock, R. (2007). A Fluorescence-Based Synthetic LPS Sensor. Journal of the American Chemical Society, 129(3), 554-561. doi:10.1021/ja065016p

Wu, J., Zawistowski, A., Ehrmann, M., Yi, T., & Schmuck, C. (2011). Peptide Functionalized Polydiacetylene Liposomes Act as a Fluorescent Turn-On Sensor for Bacterial Lipopolysaccharide. Journal of the American Chemical Society, 133(25), 9720-9723. doi:10.1021/ja204013u

Zeng, L., Wu, J., Dai, Q., Liu, W., Wang, P., & Lee, C.-S. (2010). Sensing of Bacterial Endotoxin in Aqueous Solution by Supramolecular Assembly of Pyrene Derivative. Organic Letters, 12(18), 4014-4017. doi:10.1021/ol1016228

Lan, M., Wu, J., Liu, W., Zhang, W., Ge, J., Zhang, H., … Wang, P. (2012). Copolythiophene-Derived Colorimetric and Fluorometric Sensor for Visually Supersensitive Determination of Lipopolysaccharide. Journal of the American Chemical Society, 134(15), 6685-6694. doi:10.1021/ja211570a

Dullah, E. C., & Ongkudon, C. M. (2016). Current trends in endotoxin detection and analysis of endotoxin–protein interactions. Critical Reviews in Biotechnology, 37(2), 251-261. doi:10.3109/07388551.2016.1141393

Prasad, P., Sachan, S., Suman, S., Swayambhu, G., & Gupta, S. (2018). Regenerative Core–Shell Nanoparticles for Simultaneous Removal and Detection of Endotoxins. Langmuir, 34(25), 7396-7403. doi:10.1021/acs.langmuir.8b00978

Jurado-Sánchez, B., Pacheco, M., Rojo, J., & Escarpa, A. (2017). Magnetocatalytic Graphene Quantum Dots Janus Micromotors for Bacterial Endotoxin Detection. Angewandte Chemie International Edition, 56(24), 6957-6961. doi:10.1002/anie.201701396

Jurado-Sánchez, B., Pacheco, M., Rojo, J., & Escarpa, A. (2017). Magnetocatalytic Graphene Quantum Dots Janus Micromotors for Bacterial Endotoxin Detection. Angewandte Chemie, 129(24), 7061-7065. doi:10.1002/ange.201701396

Ahn, G., Sekhon, S. S., Jeon, Y.-E., Kim, M.-S., Won, K., Kim, Y.-H., & Ahn, J.-Y. (2017). Detection of endotoxins using nanomaterials. Toxicology and Environmental Health Sciences, 9(5), 259-268. doi:10.1007/s13530-017-0330-4

Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

El Sayed, S., Giménez, C., Aznar, E., Martínez-Máñez, R., Sancenón, F., & Licchelli, M. (2015). Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains. Organic & Biomolecular Chemistry, 13(4), 1017-1021. doi:10.1039/c4ob02083a

Ribes, À., Santiago-Felipe, S., Aviñó, A., Candela-Noguera, V., Eritja, R., Sancenón, F., … Aznar, E. (2018). Design of oligonucleotide-capped mesoporous silica nanoparticles for the detection of miRNA-145 by duplex and triplex formation. Sensors and Actuators B: Chemical, 277, 598-603. doi:10.1016/j.snb.2018.09.026

Ribes, À., Xifré -Pérez, E., Aznar, E., Sancenón, F., Pardo, T., Marsal, L. F., & Martínez-Máñez, R. (2016). Molecular gated nanoporous anodic alumina for the detection of cocaine. Scientific Reports, 6(1). doi:10.1038/srep38649

Mondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148

Wang, Y., Zhang, D., Liu, W., Zhang, X., Yu, S., Liu, T., … Wang, J. (2014). Facile colorimetric method for simple and rapid detection of endotoxin based on counterion-mediated gold nanorods aggregation. Biosensors and Bioelectronics, 55, 242-248. doi:10.1016/j.bios.2013.12.006

Su, W., Cho, M., Nam, J.-D., Choe, W.-S., & Lee, Y. (2013). Aptamer-Assisted Gold Nanoparticles/PEDOT Platform for Ultrasensitive Detection of LPS. Electroanalysis, 25(2), 380-386. doi:10.1002/elan.201200453

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem