- -

Zeolite structure determination using genetic algorithms and geometry optimisation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Zeolite structure determination using genetic algorithms and geometry optimisation

Mostrar el registro completo del ítem

Liu, X.; Valero Cubas, S.; Argente, E.; Sastre Navarro, GI. (2018). Zeolite structure determination using genetic algorithms and geometry optimisation. Faraday Discussions. 211:103-115. https://doi.org/10.1039/C8FD00035B

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144811

Ficheros en el ítem

Metadatos del ítem

Título: Zeolite structure determination using genetic algorithms and geometry optimisation
Autor: Liu, Xuehua Valero Cubas, Soledad Argente, Estefanía Sastre Navarro, Germán Ignacio
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] The recently presented software zeoGAsolver is discussed, which is based on genetic algorithms, with domain-dependent crossover and selection operators that maintain the size of the population in successive iterations ...[+]
Palabras clave: Crystal-Structure solution , Framework density , Computer-Program , Enumeration , Prediction , Simulation , Units
Derechos de uso: Reserva de todos los derechos
Fuente:
Faraday Discussions. (issn: 1359-6640 )
DOI: 10.1039/C8FD00035B
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/C8FD00035B
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/MINECO//CTQ2015-70126-R/ES/DISEÑO DE CATALIZADORES ZEOLITICOS PARA LA OPTIMIZACION DE PROCESOS QUIMICOS DE INTERES INDUSTRIAL/
info:eu-repo/grantAgreement/MINECO//MAT2015-71842-P/ES/SINTESIS Y CARACTERIZACION AVANZADA DE NUEVOS MATERIALES ZEOLITICOS Y APLICACIONES EN ADSORCION, MEDIOAMBIENTE Y EN LA CONSERVACION DE ALIMENTOS/
Agradecimientos:
G. S. thanks the Spanish government for the provision of the Severo Ochoa (SEV 2016-0683), CTQ2015-70126-R and MAT2015-71842-P projects.
Tipo: Artículo

References

Liu, X., Valero, S., Argente, E., Botti, V., & Sastre, G. (2015). The importance of T⋯T⋯T angles in the feasibility of zeolites. Zeitschrift für Kristallographie - Crystalline Materials, 230(5). doi:10.1515/zkri-2014-1801

C. Baerlocher , L. B.McCusker and D. H.Olson , Atlas of Zeolite Framework Types , Elsevier , 6 th revised edn, 2007 , (176 structures); the web version [ www.iza-structure.org ] currently contains 232 structures

Delgado Friedrichs, O., & Huson, D. H. (1999). Tiling Space by Platonic Solids, I. Discrete & Computational Geometry, 21(2), 299-315. doi:10.1007/pl00009423 [+]
Liu, X., Valero, S., Argente, E., Botti, V., & Sastre, G. (2015). The importance of T⋯T⋯T angles in the feasibility of zeolites. Zeitschrift für Kristallographie - Crystalline Materials, 230(5). doi:10.1515/zkri-2014-1801

C. Baerlocher , L. B.McCusker and D. H.Olson , Atlas of Zeolite Framework Types , Elsevier , 6 th revised edn, 2007 , (176 structures); the web version [ www.iza-structure.org ] currently contains 232 structures

Delgado Friedrichs, O., & Huson, D. H. (1999). Tiling Space by Platonic Solids, I. Discrete & Computational Geometry, 21(2), 299-315. doi:10.1007/pl00009423

Friedrichs, O. D., Dress, A. W. M., Huson, D. H., Klinowski, J., & Mackay, A. L. (1999). Systematic enumeration of crystalline networks. Nature, 400(6745), 644-647. doi:10.1038/23210

Treacy, M. M. J., Rivin, I., Balkovsky, E., Randall, K. H., & Foster, M. D. (2004). Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs. Microporous and Mesoporous Materials, 74(1-3), 121-132. doi:10.1016/j.micromeso.2004.06.013

M. D. Foster and M. M. J.Treacy , Database of Hypothetical Zeolite Structures , http://www.hypotheticalzeolites.net/NEWDATABASE/SILVER_UNIQ/query.php

Earl, D. J., & Deem, M. W. (2006). Toward a Database of Hypothetical Zeolite Structures. Industrial & Engineering Chemistry Research, 45(16), 5449-5454. doi:10.1021/ie0510728

Román-Román, E. I., & Zicovich-Wilson, C. M. (2015). The role of long-range van der Waals forces in the relative stability of SiO 2 -zeolites. Chemical Physics Letters, 619, 109-114. doi:10.1016/j.cplett.2014.11.044

M. O’Keeffe and B. G.Hyde , The role of nonbonded forces in crystals , Structure and Bonding in Crystals , Academic Press , New York , 1981 , vol. 1 , ch. 10, pp. 227–254

Bnmner, G. O., & Meier, W. M. (1989). Framework density distribution of zeolite-type tetrahedral nets. Nature, 337(6203), 146-147. doi:10.1038/337146a0

Zwijnenburg, M. A., & Bell, R. G. (2008). Absence of Limitations on the Framework Density and Pore Size of High-Silica Zeolites. Chemistry of Materials, 20(9), 3008-3014. doi:10.1021/cm702175q

Li, Y., Yu, J., & Xu, R. (2013). Criteria for Zeolite Frameworks Realizable for Target Synthesis. Angewandte Chemie International Edition, 52(6), 1673-1677. doi:10.1002/anie.201206340

Majda, D., Paz, F. A. A., Friedrichs, O. D., Foster, M. D., Simperler, A., Bell, R. G., & Klinowski, J. (2008). Hypothetical Zeolitic Frameworks:  In Search of Potential Heterogeneous Catalysts. The Journal of Physical Chemistry C, 112(4), 1040-1047. doi:10.1021/jp0760354

Deem, M. W., & Newsam, J. M. (1992). Framework crystal structure solution by simulated annealing: test application to known zeolite structures. Journal of the American Chemical Society, 114(18), 7189-7198. doi:10.1021/ja00044a035

Pagola, S., & Stephens, P. W. (2010). PSSP, a computer program for the crystal structure solution of molecular materials from X-ray powder diffraction data. Journal of Applied Crystallography, 43(2), 370-376. doi:10.1107/s0021889810005509

Falcioni, M., & Deem, M. W. (1999). A biased Monte Carlo scheme for zeolite structure solution. The Journal of Chemical Physics, 110(3), 1754-1766. doi:10.1063/1.477812

Li, Y., Yu, J., & Xu, R. (2012). FraGen: a computer program for real-space structure solution of extended inorganic frameworks. Journal of Applied Crystallography, 45(4), 855-861. doi:10.1107/s002188981201878x

Kariuki, B. M., Serrano-González, H., Johnston, R. L., & Harris, K. D. M. (1997). The application of a genetic algorithm for solving crystal structures from powder diffraction data. Chemical Physics Letters, 280(3-4), 189-195. doi:10.1016/s0009-2614(97)01156-1

Woodley, S. M., Battle, P. D., Gale, J. D., & Richard A. Catlow, C. (1999). The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation. Physical Chemistry Chemical Physics, 1(10), 2535-2542. doi:10.1039/a901227c

Tremayne, M., Seaton, C. C., & Glidewell, C. (2002). Structures of three substituted arenesulfonamides from X-ray powder diffraction data using the differential evolution technique. Acta Crystallographica Section B Structural Science, 58(5), 823-834. doi:10.1107/s0108768102011928

Le Bail, A. (2005). Inorganic structure prediction withGRINSP. Journal of Applied Crystallography, 38(2), 389-395. doi:10.1107/s0021889805002384

Woodley, S. M., Catlow, C. R. A., Battle, P. D., & Gale, J. D. (2004). The prediction of inorganic crystal framework structures using excluded regions within a genetic algorithm approach. Chemical Communications, (1), 22. doi:10.1039/b312526b

Mellot Draznieks, C., Newsam, J. M., Gorman, A. M., Freeman, C. M., & Férey, G. (2000). De Novo Prediction of Inorganic Structures Developed through Automated Assembly of Secondary Building Units (AASBU Method). Angewandte Chemie International Edition, 39(13), 2270-2275. doi:10.1002/1521-3773(20000703)39:13<2270::aid-anie2270>3.0.co;2-a

Mellot-Draznieks, C., Girard, S., Férey, G., Schön, J. C., Cancarevic, Z., & Jansen, M. (2002). Computational Design and Prediction of Interesting Not-Yet-Synthesized Structures of Inorganic Materials by Using Building Unit Concepts. Chemistry - A European Journal, 8(18), 4102-4113. doi:10.1002/1521-3765(20020916)8:18<4102::aid-chem4102>3.0.co;2-3

Mellot-Draznieks, C., Girard, S., & Férey, G. (2002). Novel Inorganic Frameworks Constructed from Double-Four-Ring (D4R) Units:  Computational Design, Structures, and Lattice Energies of Silicate, Aluminophosphate, and Gallophosphate Candidates. Journal of the American Chemical Society, 124(51), 15326-15335. doi:10.1021/ja020999l

Abdelkafi, O., Idoumghar, L., Lepagnot, J., Paillaud, J.-L., Deroche, I., Baumes, L., & Collet, P. (2017). Using a novel parallel genetic hybrid algorithm to generate and determine new zeolite frameworks. Computers & Chemical Engineering, 98, 50-60. doi:10.1016/j.compchemeng.2016.11.036

Baumes, L. A., Kruger, F., Jimenez, S., Collet, P., & Corma, A. (2011). Boosting theoretical zeolitic framework generation for the determination of new materials structures using GPU programming. Physical Chemistry Chemical Physics, 13(10), 4674. doi:10.1039/c0cp02833a

X. Liu , S.Valero , E.Argente and G.Sastre ; Determining zeolite structures with a domain-dependent genetic algorithm ; Iberian Conference on Information Systems and Technologies, CISTI , 2017 , 10.23919/CISTI.2017.7976059

Liu, X., Argente, E., Valero, S., & Sastre, G. (2017). Applying Genetic Algorithms in Chemical Engineering for Determining Zeolite Structures. Advances in Intelligent Systems and Computing, 34-43. doi:10.1007/978-3-319-67180-2_4

Sastre, G., & Gale, J. D. (2001). ZeoTsites: a code for topological and crystallographic tetrahedral sites analysis in zeolites and zeotypes. Microporous and Mesoporous Materials, 43(1), 27-40. doi:10.1016/s1387-1811(00)00344-9

Villamena, F. A. (2009). Superoxide Radical Anion Adduct of 5,5-Dimethyl-1-pyrrolineN-Oxide. 5. Thermodynamics and Kinetics of Unimolecular Decomposition. The Journal of Physical Chemistry A, 113(22), 6398-6403. doi:10.1021/jp902269t

Bermúdez, D., & Sastre, G. (2017). Calculation of pore diameters in zeolites. Theoretical Chemistry Accounts, 136(10). doi:10.1007/s00214-017-2143-6

Bushuev, Y. G., & Sastre, G. (2010). Feasibility of Pure Silica Zeolites. The Journal of Physical Chemistry C, 114(45), 19157-19168. doi:10.1021/jp107296e

Sastre, G. (2014). Computational study of diffusion of propane in small pore acidic zeotypes AFX and AEI. Catalysis Today, 226, 25-36. doi:10.1016/j.cattod.2013.07.021

Ghysels, A., Moors, S. L. C., Hemelsoet, K., De Wispelaere, K., Waroquier, M., Sastre, G., & Van Speybroeck, V. (2015). Shape-Selective Diffusion of Olefins in 8-Ring Solid Acid Microporous Zeolites. The Journal of Physical Chemistry C, 119(41), 23721-23734. doi:10.1021/acs.jpcc.5b06010

Sanders, M. J., Leslie, M., & Catlow, C. R. A. (1984). Interatomic potentials for SiO2. Journal of the Chemical Society, Chemical Communications, (19), 1271. doi:10.1039/c39840001271

Sastre, G., & Corma, A. (2006). Rings and Strain in Pure Silica Zeolites. The Journal of Physical Chemistry B, 110(36), 17949-17959. doi:10.1021/jp060505x

Vessal, B., Leslie, M., & Catlow, C. R. A. (1989). Molecular Dynamics Simulation of Silica Glass. Molecular Simulation, 3(1-3), 123-136. doi:10.1080/08927028908034623

O’Keeffe, M., & Hyde, B. G. (1978). On Si—O—Si configurations in silicates. Acta Crystallographica Section B, 34(1), 27-32. doi:10.1107/s0567740878014557

Wragg, D. S., Morris, R. E., & Burton, A. W. (2008). Pure Silica Zeolite-type Frameworks: A Structural Analysis. Chemistry of Materials, 20(4), 1561-1570. doi:10.1021/cm071824j

J.-R. Hill , C. M.Freeman and L.Subramanian , Use of force fields in materials modeling , Rev. Comput. Chem. , ed. K. B. Lipkowitz and D. B. Boyd , Wiley-VCH , New York , 2000 , vol. 16 , pp. 141–216

Combariza, A. F., Gomez, D. A., & Sastre, G. (2013). Simulating the properties of small pore silicazeolites using interatomic potentials. Chem. Soc. Rev., 42(1), 114-127. doi:10.1039/c2cs35243e

Knott, B. C., Nimlos, C. T., Robichaud, D. J., Nimlos, M. R., Kim, S., & Gounder, R. (2017). Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research. ACS Catalysis, 8(2), 770-784. doi:10.1021/acscatal.7b03676

Gale, J. D. (1997). GULP: A computer program for the symmetry-adapted simulation of solids. Journal of the Chemical Society, Faraday Transactions, 93(4), 629-637. doi:10.1039/a606455h

Gale, J. D., & Rohl, A. L. (2003). The General Utility Lattice Program (GULP). Molecular Simulation, 29(5), 291-341. doi:10.1080/0892702031000104887

Togo, A., & Tanaka, I. (2015). First principles phonon calculations in materials science. Scripta Materialia, 108, 1-5. doi:10.1016/j.scriptamat.2015.07.021

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem