- -

Zeolite structure determination using genetic algorithms and geometry optimisation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Zeolite structure determination using genetic algorithms and geometry optimisation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Liu, Xuehua es_ES
dc.contributor.author Valero Cubas, Soledad es_ES
dc.contributor.author Argente, Estefanía es_ES
dc.contributor.author Sastre Navarro, Germán Ignacio es_ES
dc.date.accessioned 2020-06-02T05:37:03Z
dc.date.available 2020-06-02T05:37:03Z
dc.date.issued 2018-10-01 es_ES
dc.identifier.issn 1359-6640 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144811
dc.description.abstract [EN] The recently presented software zeoGAsolver is discussed, which is based on genetic algorithms, with domain-dependent crossover and selection operators that maintain the size of the population in successive iterations while improving the average fitness. Using the density, cell parameters, and symmetry (or candidate symmetries) of a zeolite sample whose resolution can not be achieved by analysis of the XRD (X-ray diffraction) data, the software attempts to locate the coordinates of the T-atoms of the zeolite unit cell employing a function of fitness' (F), which is defined through the different contributions to the penalties' (P) as F = 1/(1 + P). While testing the software to find known zeolites such as LTA (zeolite A), AEI (SSZ-39), ITW (ITQ-12) and others, the algorithm has found not only most of the target zeolites but also seven new hypothetical zeolites whose feasibility is confirmed by energetic and structural criteria. es_ES
dc.description.sponsorship G. S. thanks the Spanish government for the provision of the Severo Ochoa (SEV 2016-0683), CTQ2015-70126-R and MAT2015-71842-P projects. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Faraday Discussions es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Crystal-Structure solution es_ES
dc.subject Framework density es_ES
dc.subject Computer-Program es_ES
dc.subject Enumeration es_ES
dc.subject Prediction es_ES
dc.subject Simulation es_ES
dc.subject Units es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Zeolite structure determination using genetic algorithms and geometry optimisation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C8FD00035B es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-70126-R/ES/DISEÑO DE CATALIZADORES ZEOLITICOS PARA LA OPTIMIZACION DE PROCESOS QUIMICOS DE INTERES INDUSTRIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71842-P/ES/SINTESIS Y CARACTERIZACION AVANZADA DE NUEVOS MATERIALES ZEOLITICOS Y APLICACIONES EN ADSORCION, MEDIOAMBIENTE Y EN LA CONSERVACION DE ALIMENTOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Liu, X.; Valero Cubas, S.; Argente, E.; Sastre Navarro, GI. (2018). Zeolite structure determination using genetic algorithms and geometry optimisation. Faraday Discussions. 211:103-115. https://doi.org/10.1039/C8FD00035B es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/C8FD00035B es_ES
dc.description.upvformatpinicio 103 es_ES
dc.description.upvformatpfin 115 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 211 es_ES
dc.identifier.pmid 30039150 es_ES
dc.relation.pasarela S\357686 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Liu, X., Valero, S., Argente, E., Botti, V., & Sastre, G. (2015). The importance of T⋯T⋯T angles in the feasibility of zeolites. Zeitschrift für Kristallographie - Crystalline Materials, 230(5). doi:10.1515/zkri-2014-1801 es_ES
dc.description.references C. Baerlocher , L. B.McCusker and D. H.Olson , Atlas of Zeolite Framework Types , Elsevier , 6 th revised edn, 2007 , (176 structures); the web version [ www.iza-structure.org ] currently contains 232 structures es_ES
dc.description.references Delgado Friedrichs, O., & Huson, D. H. (1999). Tiling Space by Platonic Solids, I. Discrete & Computational Geometry, 21(2), 299-315. doi:10.1007/pl00009423 es_ES
dc.description.references Friedrichs, O. D., Dress, A. W. M., Huson, D. H., Klinowski, J., & Mackay, A. L. (1999). Systematic enumeration of crystalline networks. Nature, 400(6745), 644-647. doi:10.1038/23210 es_ES
dc.description.references Treacy, M. M. J., Rivin, I., Balkovsky, E., Randall, K. H., & Foster, M. D. (2004). Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs. Microporous and Mesoporous Materials, 74(1-3), 121-132. doi:10.1016/j.micromeso.2004.06.013 es_ES
dc.description.references M. D. Foster and M. M. J.Treacy , Database of Hypothetical Zeolite Structures , http://www.hypotheticalzeolites.net/NEWDATABASE/SILVER_UNIQ/query.php es_ES
dc.description.references Earl, D. J., & Deem, M. W. (2006). Toward a Database of Hypothetical Zeolite Structures. Industrial & Engineering Chemistry Research, 45(16), 5449-5454. doi:10.1021/ie0510728 es_ES
dc.description.references Román-Román, E. I., & Zicovich-Wilson, C. M. (2015). The role of long-range van der Waals forces in the relative stability of SiO 2 -zeolites. Chemical Physics Letters, 619, 109-114. doi:10.1016/j.cplett.2014.11.044 es_ES
dc.description.references M. O’Keeffe and B. G.Hyde , The role of nonbonded forces in crystals , Structure and Bonding in Crystals , Academic Press , New York , 1981 , vol. 1 , ch. 10, pp. 227–254 es_ES
dc.description.references Bnmner, G. O., & Meier, W. M. (1989). Framework density distribution of zeolite-type tetrahedral nets. Nature, 337(6203), 146-147. doi:10.1038/337146a0 es_ES
dc.description.references Zwijnenburg, M. A., & Bell, R. G. (2008). Absence of Limitations on the Framework Density and Pore Size of High-Silica Zeolites. Chemistry of Materials, 20(9), 3008-3014. doi:10.1021/cm702175q es_ES
dc.description.references Li, Y., Yu, J., & Xu, R. (2013). Criteria for Zeolite Frameworks Realizable for Target Synthesis. Angewandte Chemie International Edition, 52(6), 1673-1677. doi:10.1002/anie.201206340 es_ES
dc.description.references Majda, D., Paz, F. A. A., Friedrichs, O. D., Foster, M. D., Simperler, A., Bell, R. G., & Klinowski, J. (2008). Hypothetical Zeolitic Frameworks:  In Search of Potential Heterogeneous Catalysts. The Journal of Physical Chemistry C, 112(4), 1040-1047. doi:10.1021/jp0760354 es_ES
dc.description.references Deem, M. W., & Newsam, J. M. (1992). Framework crystal structure solution by simulated annealing: test application to known zeolite structures. Journal of the American Chemical Society, 114(18), 7189-7198. doi:10.1021/ja00044a035 es_ES
dc.description.references Pagola, S., & Stephens, P. W. (2010). PSSP, a computer program for the crystal structure solution of molecular materials from X-ray powder diffraction data. Journal of Applied Crystallography, 43(2), 370-376. doi:10.1107/s0021889810005509 es_ES
dc.description.references Falcioni, M., & Deem, M. W. (1999). A biased Monte Carlo scheme for zeolite structure solution. The Journal of Chemical Physics, 110(3), 1754-1766. doi:10.1063/1.477812 es_ES
dc.description.references Li, Y., Yu, J., & Xu, R. (2012). FraGen: a computer program for real-space structure solution of extended inorganic frameworks. Journal of Applied Crystallography, 45(4), 855-861. doi:10.1107/s002188981201878x es_ES
dc.description.references Kariuki, B. M., Serrano-González, H., Johnston, R. L., & Harris, K. D. M. (1997). The application of a genetic algorithm for solving crystal structures from powder diffraction data. Chemical Physics Letters, 280(3-4), 189-195. doi:10.1016/s0009-2614(97)01156-1 es_ES
dc.description.references Woodley, S. M., Battle, P. D., Gale, J. D., & Richard A. Catlow, C. (1999). The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation. Physical Chemistry Chemical Physics, 1(10), 2535-2542. doi:10.1039/a901227c es_ES
dc.description.references Tremayne, M., Seaton, C. C., & Glidewell, C. (2002). Structures of three substituted arenesulfonamides from X-ray powder diffraction data using the differential evolution technique. Acta Crystallographica Section B Structural Science, 58(5), 823-834. doi:10.1107/s0108768102011928 es_ES
dc.description.references Le Bail, A. (2005). Inorganic structure prediction withGRINSP. Journal of Applied Crystallography, 38(2), 389-395. doi:10.1107/s0021889805002384 es_ES
dc.description.references Woodley, S. M., Catlow, C. R. A., Battle, P. D., & Gale, J. D. (2004). The prediction of inorganic crystal framework structures using excluded regions within a genetic algorithm approach. Chemical Communications, (1), 22. doi:10.1039/b312526b es_ES
dc.description.references Mellot Draznieks, C., Newsam, J. M., Gorman, A. M., Freeman, C. M., & Férey, G. (2000). De Novo Prediction of Inorganic Structures Developed through Automated Assembly of Secondary Building Units (AASBU Method). Angewandte Chemie International Edition, 39(13), 2270-2275. doi:10.1002/1521-3773(20000703)39:13<2270::aid-anie2270>3.0.co;2-a es_ES
dc.description.references Mellot-Draznieks, C., Girard, S., Férey, G., Schön, J. C., Cancarevic, Z., & Jansen, M. (2002). Computational Design and Prediction of Interesting Not-Yet-Synthesized Structures of Inorganic Materials by Using Building Unit Concepts. Chemistry - A European Journal, 8(18), 4102-4113. doi:10.1002/1521-3765(20020916)8:18<4102::aid-chem4102>3.0.co;2-3 es_ES
dc.description.references Mellot-Draznieks, C., Girard, S., & Férey, G. (2002). Novel Inorganic Frameworks Constructed from Double-Four-Ring (D4R) Units:  Computational Design, Structures, and Lattice Energies of Silicate, Aluminophosphate, and Gallophosphate Candidates. Journal of the American Chemical Society, 124(51), 15326-15335. doi:10.1021/ja020999l es_ES
dc.description.references Abdelkafi, O., Idoumghar, L., Lepagnot, J., Paillaud, J.-L., Deroche, I., Baumes, L., & Collet, P. (2017). Using a novel parallel genetic hybrid algorithm to generate and determine new zeolite frameworks. Computers & Chemical Engineering, 98, 50-60. doi:10.1016/j.compchemeng.2016.11.036 es_ES
dc.description.references Baumes, L. A., Kruger, F., Jimenez, S., Collet, P., & Corma, A. (2011). Boosting theoretical zeolitic framework generation for the determination of new materials structures using GPU programming. Physical Chemistry Chemical Physics, 13(10), 4674. doi:10.1039/c0cp02833a es_ES
dc.description.references X. Liu , S.Valero , E.Argente and G.Sastre ; Determining zeolite structures with a domain-dependent genetic algorithm ; Iberian Conference on Information Systems and Technologies, CISTI , 2017 , 10.23919/CISTI.2017.7976059 es_ES
dc.description.references Liu, X., Argente, E., Valero, S., & Sastre, G. (2017). Applying Genetic Algorithms in Chemical Engineering for Determining Zeolite Structures. Advances in Intelligent Systems and Computing, 34-43. doi:10.1007/978-3-319-67180-2_4 es_ES
dc.description.references Sastre, G., & Gale, J. D. (2001). ZeoTsites: a code for topological and crystallographic tetrahedral sites analysis in zeolites and zeotypes. Microporous and Mesoporous Materials, 43(1), 27-40. doi:10.1016/s1387-1811(00)00344-9 es_ES
dc.description.references Villamena, F. A. (2009). Superoxide Radical Anion Adduct of 5,5-Dimethyl-1-pyrrolineN-Oxide. 5. Thermodynamics and Kinetics of Unimolecular Decomposition. The Journal of Physical Chemistry A, 113(22), 6398-6403. doi:10.1021/jp902269t es_ES
dc.description.references Bermúdez, D., & Sastre, G. (2017). Calculation of pore diameters in zeolites. Theoretical Chemistry Accounts, 136(10). doi:10.1007/s00214-017-2143-6 es_ES
dc.description.references Bushuev, Y. G., & Sastre, G. (2010). Feasibility of Pure Silica Zeolites. The Journal of Physical Chemistry C, 114(45), 19157-19168. doi:10.1021/jp107296e es_ES
dc.description.references Sastre, G. (2014). Computational study of diffusion of propane in small pore acidic zeotypes AFX and AEI. Catalysis Today, 226, 25-36. doi:10.1016/j.cattod.2013.07.021 es_ES
dc.description.references Ghysels, A., Moors, S. L. C., Hemelsoet, K., De Wispelaere, K., Waroquier, M., Sastre, G., & Van Speybroeck, V. (2015). Shape-Selective Diffusion of Olefins in 8-Ring Solid Acid Microporous Zeolites. The Journal of Physical Chemistry C, 119(41), 23721-23734. doi:10.1021/acs.jpcc.5b06010 es_ES
dc.description.references Sanders, M. J., Leslie, M., & Catlow, C. R. A. (1984). Interatomic potentials for SiO2. Journal of the Chemical Society, Chemical Communications, (19), 1271. doi:10.1039/c39840001271 es_ES
dc.description.references Sastre, G., & Corma, A. (2006). Rings and Strain in Pure Silica Zeolites. The Journal of Physical Chemistry B, 110(36), 17949-17959. doi:10.1021/jp060505x es_ES
dc.description.references Vessal, B., Leslie, M., & Catlow, C. R. A. (1989). Molecular Dynamics Simulation of Silica Glass. Molecular Simulation, 3(1-3), 123-136. doi:10.1080/08927028908034623 es_ES
dc.description.references O’Keeffe, M., & Hyde, B. G. (1978). On Si—O—Si configurations in silicates. Acta Crystallographica Section B, 34(1), 27-32. doi:10.1107/s0567740878014557 es_ES
dc.description.references Wragg, D. S., Morris, R. E., & Burton, A. W. (2008). Pure Silica Zeolite-type Frameworks: A Structural Analysis. Chemistry of Materials, 20(4), 1561-1570. doi:10.1021/cm071824j es_ES
dc.description.references J.-R. Hill , C. M.Freeman and L.Subramanian , Use of force fields in materials modeling , Rev. Comput. Chem. , ed. K. B. Lipkowitz and D. B. Boyd , Wiley-VCH , New York , 2000 , vol. 16 , pp. 141–216 es_ES
dc.description.references Combariza, A. F., Gomez, D. A., & Sastre, G. (2013). Simulating the properties of small pore silicazeolites using interatomic potentials. Chem. Soc. Rev., 42(1), 114-127. doi:10.1039/c2cs35243e es_ES
dc.description.references Knott, B. C., Nimlos, C. T., Robichaud, D. J., Nimlos, M. R., Kim, S., & Gounder, R. (2017). Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research. ACS Catalysis, 8(2), 770-784. doi:10.1021/acscatal.7b03676 es_ES
dc.description.references Gale, J. D. (1997). GULP: A computer program for the symmetry-adapted simulation of solids. Journal of the Chemical Society, Faraday Transactions, 93(4), 629-637. doi:10.1039/a606455h es_ES
dc.description.references Gale, J. D., & Rohl, A. L. (2003). The General Utility Lattice Program (GULP). Molecular Simulation, 29(5), 291-341. doi:10.1080/0892702031000104887 es_ES
dc.description.references Togo, A., & Tanaka, I. (2015). First principles phonon calculations in materials science. Scripta Materialia, 108, 1-5. doi:10.1016/j.scriptamat.2015.07.021 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem