Mostrar el registro sencillo del ítem
dc.contributor.author | Serrano, J.R. | es_ES |
dc.contributor.author | Piqueras, P. | es_ES |
dc.contributor.author | De La Morena, Joaquín | es_ES |
dc.contributor.author | Sanchis-Pacheco, Enrique José | es_ES |
dc.date.accessioned | 2020-06-02T05:37:20Z | |
dc.date.available | 2020-06-02T05:37:20Z | |
dc.date.issued | 2019-12-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144819 | |
dc.description.abstract | [EN] Late fuel post-injections are the most usual strategy to reach high exhaust temperature for the active regeneration of diesel particulate filters. However, it is important to optimise these strategies in order to mitigate their negative effect on the engine fuel consumption. This work aims at understanding the influence of the post-injection parameters, such as its start of injection and its fuel quantity, on the duration of the regeneration event and the fuel consumption along it. For this purpose, a set of computational models are employed to figure out in a holistic way the involved phenomena in the interaction between the engine and the exhaust gas aftertreatment system. Firstly, an engine model is implemented to evaluate the effect of the late fuel post-injection pattern on the gas properties at the exhaust aftertreatment system inlet in different steady-state operating conditions. These are selected to provide representative boundary conditions of the exhaust gas flow concerning dwell time, exhaust temperature and O2 concentration. In this way, the results are later applied to the analysis of the diesel oxidation catalyst and wall-flow particulate filter responses. The dependence of the diesel particulate filter (DPF) inlet temperature is discussed based on the efficiency of each post-injection strategy to increase the exhaust gas temperature. Next, the influence on the dynamics of the regeneration of the post-injection parameters through the change in gas temperature and O2 concentration is finally studied distinguishing the pre-heating, maximum reactivity and late soot oxidation stages as well as the required fuel consumption to complete the regeneration process. | es_ES |
dc.description.sponsorship | This work has been partially supported by FEDER and the Ministerio de Ciencia, Innovacion y Universidades of the Government of Spain through Grant No. TRA2016-79185-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Internal combustion engines | es_ES |
dc.subject | Emissions | es_ES |
dc.subject | Particulate matter | es_ES |
dc.subject | Wall-flow particulate filter | es_ES |
dc.subject | Oxidation catalyst | es_ES |
dc.subject | Post-injection | es_ES |
dc.subject | Regeneration | es_ES |
dc.subject | Fuel consumption | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Late Fuel Post-Injection Influence on the Dynamics and Efficiency of Wall-Flow Particulate Filters Regeneration | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app9245384 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//TRA2016-79185-R/ES/Desarrollo de herramientas experimentales y computacionales para la caracterización de sistemas de post-tratamiento de gases de escape en motores de encendido por compresión/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2016-79185-R/ES/DESARROLLO DE HERRAMIENTAS EXPERIMENTALES Y COMPUTACIONALES PARA LA CARACTERIZACION DE SISTEMAS DE POST-TRATAMIENTO DE GASES DE ESCAPE EN MOTORES DE ENCENDIDO POR COMPRESION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Serrano, J.; Piqueras, P.; De La Morena, J.; Sanchis-Pacheco, EJ. (2019). Late Fuel Post-Injection Influence on the Dynamics and Efficiency of Wall-Flow Particulate Filters Regeneration. Applied Sciences. 9(24):1-23. https://doi.org/10.3390/app9245384 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app9245384 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 23 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 24 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\407648 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Chan, T. W., Meloche, E., Kubsh, J., Rosenblatt, D., Brezny, R., & Rideout, G. (2012). Evaluation of a Gasoline Particulate Filter to Reduce Particle Emissions from a Gasoline Direct Injection Vehicle. SAE International Journal of Fuels and Lubricants, 5(3), 1277-1290. doi:10.4271/2012-01-1727 | es_ES |
dc.description.references | Cooper, J. D., Liu, L., Ramskill, N. P., Watling, T. C., York, A. P. E., Stitt, E. H., … Gladden, L. F. (2019). Numerical and experimental studies of gas flow in a particulate filter. Chemical Engineering Science, 209, 115179. doi:10.1016/j.ces.2019.115179 | es_ES |
dc.description.references | Guo, Y., Stevanovic, S., Verma, P., Jafari, M., Jabbour, N., Brown, R., … Ristovski, Z. (2019). An experimental study of the role of biodiesel on the performance of diesel particulate filters. Fuel, 247, 67-76. doi:10.1016/j.fuel.2019.03.042 | es_ES |
dc.description.references | Torregrosa, A. J., Piqueras, P., Sanchis, E. J., Guilain, S., & Dubarry, M. (2018). Assessment of acoustic reciprocity and conservativeness in exhaust aftertreatment systems. Journal of Sound and Vibration, 436, 46-61. doi:10.1016/j.jsv.2018.08.032 | es_ES |
dc.description.references | Bermúdez, V., Serrano, J., Piqueras, P., & Sanchis, E. (2017). On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters. Applied Sciences, 7(3), 234. doi:10.3390/app7030234 | es_ES |
dc.description.references | Rodríguez-Fernández, J., Lapuerta, M., & Sánchez-Valdepeñas, J. (2017). Regeneration of diesel particulate filters: Effect of renewable fuels. Renewable Energy, 104, 30-39. doi:10.1016/j.renene.2016.11.059 | es_ES |
dc.description.references | Lambert, C., Chanko, T., Dobson, D., Liu, X., & Pakko, J. (2017). Gasoline Particle Filter Development. Emission Control Science and Technology, 3(1), 105-111. doi:10.1007/s40825-016-0055-x | es_ES |
dc.description.references | Bensaid, S., Marchisio, D. L., & Fino, D. (2010). Numerical simulation of soot filtration and combustion within diesel particulate filters. Chemical Engineering Science, 65(1), 357-363. doi:10.1016/j.ces.2009.06.051 | es_ES |
dc.description.references | Guan, B., Zhan, R., Lin, H., & Huang, Z. (2015). Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. Journal of Environmental Management, 154, 225-258. doi:10.1016/j.jenvman.2015.02.027 | es_ES |
dc.description.references | Joshi, A., & Johnson, T. V. (2018). Gasoline Particulate Filters—a Review. Emission Control Science and Technology, 4(4), 219-239. doi:10.1007/s40825-018-0101-y | es_ES |
dc.description.references | Jiaqiang, E., Zhao, X., Xie, L., Zhang, B., Chen, J., Zuo, Q., … Zhang, Z. (2019). Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory. Energy, 169, 719-729. doi:10.1016/j.energy.2018.12.086 | es_ES |
dc.description.references | O’Connor, J., & Musculus, M. (2013). Post Injections for Soot Reduction in Diesel Engines: A Review of Current Understanding. SAE International Journal of Engines, 6(1), 400-421. doi:10.4271/2013-01-0917 | es_ES |
dc.description.references | Beatrice, C., Iorio, S. D., Guido, C., & Napolitano, P. (2012). Detailed characterization of particulate emissions of an automotive catalyzed DPF using actual regeneration strategies. Experimental Thermal and Fluid Science, 39, 45-53. doi:10.1016/j.expthermflusci.2012.01.005 | es_ES |
dc.description.references | Guardiola, C., Pla, B., Piqueras, P., Mora, J., & Lefebvre, D. (2017). Model-based passive and active diagnostics strategies for diesel oxidation catalysts. Applied Thermal Engineering, 110, 962-971. doi:10.1016/j.applthermaleng.2016.08.207 | es_ES |
dc.description.references | Ko, J., Si, W., Jin, D., Myung, C.-L., & Park, S. (2016). Effect of active regeneration on time-resolved characteristics of gaseous emissions and size-resolved particle emissions from light-duty diesel engine. Journal of Aerosol Science, 91, 62-77. doi:10.1016/j.jaerosci.2015.09.007 | es_ES |
dc.description.references | Lapuerta, M., Hernandez, J. J., & Oliva, F. (2012). Strategies for active diesel particulate filter regeneration based on late injection and exhaust recirculation with different fuels. International Journal of Engine Research, 15(2), 209-221. doi:10.1177/1468087412468584 | es_ES |
dc.description.references | Piqueras, P., García, A., Monsalve-Serrano, J., & Ruiz, M. J. (2019). Performance of a diesel oxidation catalyst under diesel-gasoline reactivity controlled compression ignition combustion conditions. Energy Conversion and Management, 196, 18-31. doi:10.1016/j.enconman.2019.05.111 | es_ES |
dc.description.references | Chen, P., Ibrahim, U., & Wang, J. (2014). Experimental investigation of diesel and biodiesel post injections during active diesel particulate filter regenerations. Fuel, 130, 286-295. doi:10.1016/j.fuel.2014.04.046 | es_ES |
dc.description.references | Boger, T., Rose, D., Tilgner, I.-C., & Heibel, A. K. (2008). Regeneration Strategies for an Enhanced Thermal Management of Oxide Diesel Particulate Filters. SAE International Journal of Fuels and Lubricants, 1(1), 162-172. doi:10.4271/2008-01-0328 | es_ES |
dc.description.references | Luján, J. M., Serrano, J. R., Piqueras, P., & Diesel, B. (2019). Turbine and exhaust ports thermal insulation impact on the engine efficiency and aftertreatment inlet temperature. Applied Energy, 240, 409-423. doi:10.1016/j.apenergy.2019.02.043 | es_ES |
dc.description.references | OpenWAM Website, CMT-Motores Tèrmicos (Universitat Politècnica de València)www.openwam.org | es_ES |
dc.description.references | Galindo, J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2009). Description of a Semi-Independent Time Discretization Methodology for a One-Dimensional Gas Dynamics Model. Journal of Engineering for Gas Turbines and Power, 131(3). doi:10.1115/1.2983015 | es_ES |
dc.description.references | Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261 | es_ES |
dc.description.references | Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2015). Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 86, 204-218. doi:10.1016/j.energy.2015.03.130 | es_ES |
dc.description.references | Galindo, J., Serrano, J. R., Piqueras, P., & García-Afonso, Ó. (2012). Heat transfer modelling in honeycomb wall-flow diesel particulate filters. Energy, 43(1), 201-213. doi:10.1016/j.energy.2012.04.044 | es_ES |
dc.description.references | Macián, V., Serrano, J. R., Piqueras, P., & Sanchis, E. J. (2019). Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters. Energy, 179, 407-421. doi:10.1016/j.energy.2019.04.200 | es_ES |
dc.description.references | Serrano, J. R., Climent, H., Piqueras, P., & Angiolini, E. (2016). Filtration modelling in wall-flow particulate filters of low soot penetration thickness. Energy, 112, 883-898. doi:10.1016/j.energy.2016.06.121 | es_ES |
dc.description.references | Serrano, J. R., Arnau, F. J., Piqueras, P., & García-Afonso, Ó. (2013). Packed bed of spherical particles approach for pressure drop prediction in wall-flow DPFs (diesel particulate filters) under soot loading conditions. Energy, 58, 644-654. doi:10.1016/j.energy.2013.05.051 | es_ES |
dc.description.references | Oh, S. H., & Cavendish, J. C. (1982). Transients of monolithic catalytic converters. Response to step changes in feedstream temperature as related to controlling automobile emissions. Industrial & Engineering Chemistry Product Research and Development, 21(1), 29-37. doi:10.1021/i300005a006 | es_ES |
dc.description.references | Guardiola, C., Dolz, V., Pla, B., & Mora, J. (2016). Fast estimation of diesel oxidation catalysts inlet gas temperature. Control Engineering Practice, 56, 148-156. doi:10.1016/j.conengprac.2016.08.020 | es_ES |
dc.description.references | Luján, J. M., Serrano, J. R., Piqueras, P., & García-Afonso, Ó. (2015). Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation. Energy, 80, 614-627. doi:10.1016/j.energy.2014.12.017 | es_ES |
dc.description.references | Hessel, R., Reitz, R. D., Musculus, M., O’Connor, J., & Flowers, D. (2014). A CFD Study of Post Injection Influences on Soot Formation and Oxidation under Diesel-Like Operating Conditions. SAE International Journal of Engines, 7(2), 694-713. doi:10.4271/2014-01-1256 | es_ES |