- -

Late Fuel Post-Injection Influence on the Dynamics and Efficiency of Wall-Flow Particulate Filters Regeneration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Late Fuel Post-Injection Influence on the Dynamics and Efficiency of Wall-Flow Particulate Filters Regeneration

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serrano, J.R. es_ES
dc.contributor.author Piqueras, P. es_ES
dc.contributor.author De La Morena, Joaquín es_ES
dc.contributor.author Sanchis-Pacheco, Enrique José es_ES
dc.date.accessioned 2020-06-02T05:37:20Z
dc.date.available 2020-06-02T05:37:20Z
dc.date.issued 2019-12-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144819
dc.description.abstract [EN] Late fuel post-injections are the most usual strategy to reach high exhaust temperature for the active regeneration of diesel particulate filters. However, it is important to optimise these strategies in order to mitigate their negative effect on the engine fuel consumption. This work aims at understanding the influence of the post-injection parameters, such as its start of injection and its fuel quantity, on the duration of the regeneration event and the fuel consumption along it. For this purpose, a set of computational models are employed to figure out in a holistic way the involved phenomena in the interaction between the engine and the exhaust gas aftertreatment system. Firstly, an engine model is implemented to evaluate the effect of the late fuel post-injection pattern on the gas properties at the exhaust aftertreatment system inlet in different steady-state operating conditions. These are selected to provide representative boundary conditions of the exhaust gas flow concerning dwell time, exhaust temperature and O2 concentration. In this way, the results are later applied to the analysis of the diesel oxidation catalyst and wall-flow particulate filter responses. The dependence of the diesel particulate filter (DPF) inlet temperature is discussed based on the efficiency of each post-injection strategy to increase the exhaust gas temperature. Next, the influence on the dynamics of the regeneration of the post-injection parameters through the change in gas temperature and O2 concentration is finally studied distinguishing the pre-heating, maximum reactivity and late soot oxidation stages as well as the required fuel consumption to complete the regeneration process. es_ES
dc.description.sponsorship This work has been partially supported by FEDER and the Ministerio de Ciencia, Innovacion y Universidades of the Government of Spain through Grant No. TRA2016-79185-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Internal combustion engines es_ES
dc.subject Emissions es_ES
dc.subject Particulate matter es_ES
dc.subject Wall-flow particulate filter es_ES
dc.subject Oxidation catalyst es_ES
dc.subject Post-injection es_ES
dc.subject Regeneration es_ES
dc.subject Fuel consumption es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Late Fuel Post-Injection Influence on the Dynamics and Efficiency of Wall-Flow Particulate Filters Regeneration es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app9245384 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TRA2016-79185-R/ES/Desarrollo de herramientas experimentales y computacionales para la caracterización de sistemas de post-tratamiento de gases de escape en motores de encendido por compresión/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2016-79185-R/ES/DESARROLLO DE HERRAMIENTAS EXPERIMENTALES Y COMPUTACIONALES PARA LA CARACTERIZACION DE SISTEMAS DE POST-TRATAMIENTO DE GASES DE ESCAPE EN MOTORES DE ENCENDIDO POR COMPRESION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Serrano, J.; Piqueras, P.; De La Morena, J.; Sanchis-Pacheco, EJ. (2019). Late Fuel Post-Injection Influence on the Dynamics and Efficiency of Wall-Flow Particulate Filters Regeneration. Applied Sciences. 9(24):1-23. https://doi.org/10.3390/app9245384 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app9245384 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 24 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\407648 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Chan, T. W., Meloche, E., Kubsh, J., Rosenblatt, D., Brezny, R., & Rideout, G. (2012). Evaluation of a Gasoline Particulate Filter to Reduce Particle Emissions from a Gasoline Direct Injection Vehicle. SAE International Journal of Fuels and Lubricants, 5(3), 1277-1290. doi:10.4271/2012-01-1727 es_ES
dc.description.references Cooper, J. D., Liu, L., Ramskill, N. P., Watling, T. C., York, A. P. E., Stitt, E. H., … Gladden, L. F. (2019). Numerical and experimental studies of gas flow in a particulate filter. Chemical Engineering Science, 209, 115179. doi:10.1016/j.ces.2019.115179 es_ES
dc.description.references Guo, Y., Stevanovic, S., Verma, P., Jafari, M., Jabbour, N., Brown, R., … Ristovski, Z. (2019). An experimental study of the role of biodiesel on the performance of diesel particulate filters. Fuel, 247, 67-76. doi:10.1016/j.fuel.2019.03.042 es_ES
dc.description.references Torregrosa, A. J., Piqueras, P., Sanchis, E. J., Guilain, S., & Dubarry, M. (2018). Assessment of acoustic reciprocity and conservativeness in exhaust aftertreatment systems. Journal of Sound and Vibration, 436, 46-61. doi:10.1016/j.jsv.2018.08.032 es_ES
dc.description.references Bermúdez, V., Serrano, J., Piqueras, P., & Sanchis, E. (2017). On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters. Applied Sciences, 7(3), 234. doi:10.3390/app7030234 es_ES
dc.description.references Rodríguez-Fernández, J., Lapuerta, M., & Sánchez-Valdepeñas, J. (2017). Regeneration of diesel particulate filters: Effect of renewable fuels. Renewable Energy, 104, 30-39. doi:10.1016/j.renene.2016.11.059 es_ES
dc.description.references Lambert, C., Chanko, T., Dobson, D., Liu, X., & Pakko, J. (2017). Gasoline Particle Filter Development. Emission Control Science and Technology, 3(1), 105-111. doi:10.1007/s40825-016-0055-x es_ES
dc.description.references Bensaid, S., Marchisio, D. L., & Fino, D. (2010). Numerical simulation of soot filtration and combustion within diesel particulate filters. Chemical Engineering Science, 65(1), 357-363. doi:10.1016/j.ces.2009.06.051 es_ES
dc.description.references Guan, B., Zhan, R., Lin, H., & Huang, Z. (2015). Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. Journal of Environmental Management, 154, 225-258. doi:10.1016/j.jenvman.2015.02.027 es_ES
dc.description.references Joshi, A., & Johnson, T. V. (2018). Gasoline Particulate Filters—a Review. Emission Control Science and Technology, 4(4), 219-239. doi:10.1007/s40825-018-0101-y es_ES
dc.description.references Jiaqiang, E., Zhao, X., Xie, L., Zhang, B., Chen, J., Zuo, Q., … Zhang, Z. (2019). Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory. Energy, 169, 719-729. doi:10.1016/j.energy.2018.12.086 es_ES
dc.description.references O’Connor, J., & Musculus, M. (2013). Post Injections for Soot Reduction in Diesel Engines: A Review of Current Understanding. SAE International Journal of Engines, 6(1), 400-421. doi:10.4271/2013-01-0917 es_ES
dc.description.references Beatrice, C., Iorio, S. D., Guido, C., & Napolitano, P. (2012). Detailed characterization of particulate emissions of an automotive catalyzed DPF using actual regeneration strategies. Experimental Thermal and Fluid Science, 39, 45-53. doi:10.1016/j.expthermflusci.2012.01.005 es_ES
dc.description.references Guardiola, C., Pla, B., Piqueras, P., Mora, J., & Lefebvre, D. (2017). Model-based passive and active diagnostics strategies for diesel oxidation catalysts. Applied Thermal Engineering, 110, 962-971. doi:10.1016/j.applthermaleng.2016.08.207 es_ES
dc.description.references Ko, J., Si, W., Jin, D., Myung, C.-L., & Park, S. (2016). Effect of active regeneration on time-resolved characteristics of gaseous emissions and size-resolved particle emissions from light-duty diesel engine. Journal of Aerosol Science, 91, 62-77. doi:10.1016/j.jaerosci.2015.09.007 es_ES
dc.description.references Lapuerta, M., Hernandez, J. J., & Oliva, F. (2012). Strategies for active diesel particulate filter regeneration based on late injection and exhaust recirculation with different fuels. International Journal of Engine Research, 15(2), 209-221. doi:10.1177/1468087412468584 es_ES
dc.description.references Piqueras, P., García, A., Monsalve-Serrano, J., & Ruiz, M. J. (2019). Performance of a diesel oxidation catalyst under diesel-gasoline reactivity controlled compression ignition combustion conditions. Energy Conversion and Management, 196, 18-31. doi:10.1016/j.enconman.2019.05.111 es_ES
dc.description.references Chen, P., Ibrahim, U., & Wang, J. (2014). Experimental investigation of diesel and biodiesel post injections during active diesel particulate filter regenerations. Fuel, 130, 286-295. doi:10.1016/j.fuel.2014.04.046 es_ES
dc.description.references Boger, T., Rose, D., Tilgner, I.-C., & Heibel, A. K. (2008). Regeneration Strategies for an Enhanced Thermal Management of Oxide Diesel Particulate Filters. SAE International Journal of Fuels and Lubricants, 1(1), 162-172. doi:10.4271/2008-01-0328 es_ES
dc.description.references Luján, J. M., Serrano, J. R., Piqueras, P., & Diesel, B. (2019). Turbine and exhaust ports thermal insulation impact on the engine efficiency and aftertreatment inlet temperature. Applied Energy, 240, 409-423. doi:10.1016/j.apenergy.2019.02.043 es_ES
dc.description.references OpenWAM Website, CMT-Motores Tèrmicos (Universitat Politècnica de València)www.openwam.org es_ES
dc.description.references Galindo, J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2009). Description of a Semi-Independent Time Discretization Methodology for a One-Dimensional Gas Dynamics Model. Journal of Engineering for Gas Turbines and Power, 131(3). doi:10.1115/1.2983015 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2014). Analysis and Methodology to Characterize Heat Transfer Phenomena in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 137(2). doi:10.1115/1.4028261 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Arnau, F. J., Dombrovsky, A., & Smith, L. (2015). Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes. Energy, 86, 204-218. doi:10.1016/j.energy.2015.03.130 es_ES
dc.description.references Galindo, J., Serrano, J. R., Piqueras, P., & García-Afonso, Ó. (2012). Heat transfer modelling in honeycomb wall-flow diesel particulate filters. Energy, 43(1), 201-213. doi:10.1016/j.energy.2012.04.044 es_ES
dc.description.references Macián, V., Serrano, J. R., Piqueras, P., & Sanchis, E. J. (2019). Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters. Energy, 179, 407-421. doi:10.1016/j.energy.2019.04.200 es_ES
dc.description.references Serrano, J. R., Climent, H., Piqueras, P., & Angiolini, E. (2016). Filtration modelling in wall-flow particulate filters of low soot penetration thickness. Energy, 112, 883-898. doi:10.1016/j.energy.2016.06.121 es_ES
dc.description.references Serrano, J. R., Arnau, F. J., Piqueras, P., & García-Afonso, Ó. (2013). Packed bed of spherical particles approach for pressure drop prediction in wall-flow DPFs (diesel particulate filters) under soot loading conditions. Energy, 58, 644-654. doi:10.1016/j.energy.2013.05.051 es_ES
dc.description.references Oh, S. H., & Cavendish, J. C. (1982). Transients of monolithic catalytic converters. Response to step changes in feedstream temperature as related to controlling automobile emissions. Industrial & Engineering Chemistry Product Research and Development, 21(1), 29-37. doi:10.1021/i300005a006 es_ES
dc.description.references Guardiola, C., Dolz, V., Pla, B., & Mora, J. (2016). Fast estimation of diesel oxidation catalysts inlet gas temperature. Control Engineering Practice, 56, 148-156. doi:10.1016/j.conengprac.2016.08.020 es_ES
dc.description.references Luján, J. M., Serrano, J. R., Piqueras, P., & García-Afonso, Ó. (2015). Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation. Energy, 80, 614-627. doi:10.1016/j.energy.2014.12.017 es_ES
dc.description.references Hessel, R., Reitz, R. D., Musculus, M., O’Connor, J., & Flowers, D. (2014). A CFD Study of Post Injection Influences on Soot Formation and Oxidation under Diesel-Like Operating Conditions. SAE International Journal of Engines, 7(2), 694-713. doi:10.4271/2014-01-1256 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem