Lei, W.-S. (2016). A framework for statistical modelling of plastic yielding initiated cleavage fracture of structural steels. Philosophical Magazine, 96(35), 3586-3631. doi:10.1080/14786435.2016.1232494
Lei, W.-S. (2016). A cumulative failure probability model for cleavage fracture in ferritic steels. Mechanics of Materials, 93, 184-198. doi:10.1016/j.mechmat.2015.11.001
Lei, W.-S. (2016). On the statistical modeling of cleavage fracture toughness of structural steels. Mechanics of Materials, 101, 81-92. doi:10.1016/j.mechmat.2016.07.009
[+]
Lei, W.-S. (2016). A framework for statistical modelling of plastic yielding initiated cleavage fracture of structural steels. Philosophical Magazine, 96(35), 3586-3631. doi:10.1080/14786435.2016.1232494
Lei, W.-S. (2016). A cumulative failure probability model for cleavage fracture in ferritic steels. Mechanics of Materials, 93, 184-198. doi:10.1016/j.mechmat.2015.11.001
Lei, W.-S. (2016). On the statistical modeling of cleavage fracture toughness of structural steels. Mechanics of Materials, 101, 81-92. doi:10.1016/j.mechmat.2016.07.009
Qian, G., & Niffenegger, M. (2014). Deterministic and probabilistic analysis of a reactor pressure vessel subjected to pressurized thermal shocks. Nuclear Engineering and Design, 273, 381-395. doi:10.1016/j.nucengdes.2014.03.032
Qian, G., González-Albuixech, V. F., & Niffenegger, M. (2014). Probabilistic assessment of a reactor pressure vessel subjected to pressurized thermal shocks by using crack distributions. Nuclear Engineering and Design, 270, 312-324. doi:10.1016/j.nucengdes.2013.12.062
Landes, J., & Shaffer, D. (s. f.). Statistical Characterization of Fracture in the Transition Region. Fracture Mechanics, 368-368-15. doi:10.1520/stp36981s
Beremin, F. M., Pineau, A., Mudry, F., Devaux, J.-C., D’Escatha, Y., & Ledermann, P. (1983). A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metallurgical Transactions A, 14(11), 2277-2287. doi:10.1007/bf02663302
Hojo, K., Muroya, I., & Brückner-Foit, A. (1997). Fracture toughness transition curve estimation from a notched round bar specimen using the local approach method. Nuclear Engineering and Design, 174(3), 247-258. doi:10.1016/s0029-5493(97)00125-8
(2004). Fatigue & Fracture of Engineering Materials & Structures, 27(10). doi:10.1111/ffe.2004.27.issue-10
Gao, X., Zhang, G., & Srivatsan, T. S. (2005). Prediction of cleavage fracture in ferritic steels: a modified Weibull stress model. Materials Science and Engineering: A, 394(1-2), 210-219. doi:10.1016/j.msea.2004.11.035
Petti, J. P., & Dodds, R. H. (2005). Calibration of the Weibull stress scale parameter, σu, using the Master Curve. Engineering Fracture Mechanics, 72(1), 91-120. doi:10.1016/j.engfracmech.2004.03.009
Pineau, A. (2006). Development of the Local Approach to Fracture over the Past 25 years: Theory and Applications. International Journal of Fracture, 138(1-4), 139-166. doi:10.1007/s10704-006-0035-1
Qian, G., González-Albuixech, V. F., & Niffenegger, M. (2015). Calibration of Beremin model with the Master Curve. Engineering Fracture Mechanics, 136, 15-25. doi:10.1016/j.engfracmech.2015.02.003
Ruggieri, C., & Dodds, R. H. (2015). An engineering methodology for constraint corrections of elastic–plastic fracture toughness – Part I: A review on probabilistic models and exploration of plastic strain effects. Engineering Fracture Mechanics, 134, 368-390. doi:10.1016/j.engfracmech.2014.12.015
Moattari, M., Sattari-Far, I., Persechino, I., & Bonora, N. (2016). Prediction of fracture toughness in ductile-to-brittle transition region using combined CDM and Beremin models. Materials Science and Engineering: A, 657, 161-172. doi:10.1016/j.msea.2015.12.090
Lei, W.-S. (2016). A statistical model of cleavage fracture in structural steels with power-law distribution of microcrack size. Philosophical Magazine Letters, 96(3), 101-111. doi:10.1080/09500839.2016.1158425
Heerens, J., Pfuff, M., Hellmann, D., & Zerbst, U. (2002). The lower bound toughness procedure applied to the Euro fracture toughness dataset. Engineering Fracture Mechanics, 69(4), 483-495. doi:10.1016/s0013-7944(01)00069-8
(2016). Fatigue & Fracture of Engineering Materials & Structures, 39(5). doi:10.1111/ffe.v39.5
Lin, T., Evans, A. G., & Ritchie, R. O. (1986). A statistical model of brittle fracture by transgranular cleavage. Journal of the Mechanics and Physics of Solids, 34(5), 477-497. doi:10.1016/0022-5096(86)90013-x
Li, D., & Yao, M. (1996). A metallographic and fractographic study of the origin of cleavage fracture in mild steel. Materials Characterization, 36(1), 27-33. doi:10.1016/1044-5803(95)00236-7
Chen, J. H., Wang, G. Z., & Wang, Q. (2002). Change of critical events of cleavage fracture with variation of microscopic features of low-alloy steels. Metallurgical and Materials Transactions A, 33(11), 3393-3402. doi:10.1007/s11661-002-0327-7
Bordet, S. R., Karstensen, A. D., Knowles, D. M., & Wiesner, C. S. (2005). A new statistical local criterion for cleavage fracture in steel. Part I: model presentation. Engineering Fracture Mechanics, 72(3), 435-452. doi:10.1016/j.engfracmech.2004.02.009
Scibetta, M. (2016). A cleavage fracture framework: New perspectives in cleavage modeling of ferritic steels. Engineering Fracture Mechanics, 160, 147-169. doi:10.1016/j.engfracmech.2016.03.047
Pineau, A., Benzerga, A. A., & Pardoen, T. (2016). Failure of metals I: Brittle and ductile fracture. Acta Materialia, 107, 424-483. doi:10.1016/j.actamat.2015.12.034
Mäntylä, M., Rossoll, A., Nedbal, I., Prioul, C., & Marini, B. (1999). Fractographic observations of cleavage fracture initiation in a bainitic A508 steel. Journal of Nuclear Materials, 264(3), 257-262. doi:10.1016/s0022-3115(98)00496-6
Narström, T., & Isacsson, M. (1999). Microscopic investigation of cleavage initiation in modified A508B pressure vessel steel. Materials Science and Engineering: A, 271(1-2), 224-231. doi:10.1016/s0921-5093(99)00201-4
Balart, M. J., Davis, C. L., & Strangwood, M. (2000). Cleavage initiation in Ti–V–N and V–N microalloyed ferritic–pearlitic forging steels. Materials Science and Engineering: A, 284(1-2), 1-13. doi:10.1016/s0921-5093(00)00803-0
Bošanský, J., & Šmida, T. (2002). Deformation twins — probable inherent nuclei of cleavage fracture in ferritic steels. Materials Science and Engineering: A, 323(1-2), 198-205. doi:10.1016/s0921-5093(01)01350-8
Balart, M. J., Davis, C. L., & Strangwood, M. (2004). Observations of cleavage initiation at (Ti,V)(C,N) particles of heterogeneous composition in microalloyed steels. Scripta Materialia, 50(3), 371-375. doi:10.1016/j.scriptamat.2003.10.009
Echeverria, A. (2004). Cleavage micromechanisms on microalloyed steels. Evolution with temperature of some critical parameters. Scripta Materialia, 50(2), 307-312. doi:10.1016/j.scriptamat.2003.09.003
Bose Filho, W. W., Carvalho, A. L. M., & Bowen, P. (2007). Micromechanisms of cleavage fracture initiation from inclusions in ferritic welds. Materials Science and Engineering: A, 452-453, 401-410. doi:10.1016/j.msea.2006.10.096
Bose Filho, W. W., Carvalho, A. L. M., & Bowen, P. (2007). Micromechanisms of cleavage fracture initiation from inclusions in ferritic welds. Materials Science and Engineering: A, 460-461, 436-452. doi:10.1016/j.msea.2007.01.115
Lan, L., Qiu, C., Song, H., & Zhao, D. (2014). Correlation of martensite–austenite constituent and cleavage crack initiation in welding heat affected zone of low carbon bainitic steel. Materials Letters, 125, 86-88. doi:10.1016/j.matlet.2014.03.123
Asako, S., Kawabata, T., Aihara, S., Kimura, S., & Kagehira, K. (2016). Micro-processes of brittle fracture initiation in bainite steel manufactured by ausforming. Procedia Structural Integrity, 2, 3668-3675. doi:10.1016/j.prostr.2016.06.456
Wang, G. ., Liu, Y. ., & Chen, J. . (2004). Investigation of cleavage fracture initiation in notched specimens of a C–Mn steel with carbides and inclusions. Materials Science and Engineering: A, 369(1-2), 181-191. doi:10.1016/j.msea.2003.11.003
He, J., Lian, J., Golisch, G., He, A., Di, Y., & Münstermann, S. (2017). Investigation on micromechanism and stress state effects on cleavage fracture of ferritic-pearlitic steel at −196 °C. Materials Science and Engineering: A, 686, 134-141. doi:10.1016/j.msea.2017.01.042
Lin, T., Evans, A. G., & Ritchie, R. O. (1987). Stochastic modeling of the independent roles of particle size and grain size in transgranular cleavage fracture. Metallurgical and Materials Transactions A, 18(4), 641-651. doi:10.1007/bf02649480
Roberts, S. ., Noronha, S. ., Wilkinson, A. ., & Hirsch, P. . (2002). Modelling the initiation of cleavage fracture of ferritic steels. Acta Materialia, 50(5), 1229-1244. doi:10.1016/s1359-6454(01)00425-6
San Martin, J. ., & Rodriguez-Ibabe, J. . (1999). Determination of energetic parameters controlling cleavage fracture in a Ti-V microalloyed ferrite-pearlite steel. Scripta Materialia, 40(4), 459-464. doi:10.1016/s1359-6462(98)00467-9
Margolin, B. Z., Shvetsova, V. A., Gulenko, A. G., & Kostylev, V. I. (2008). Prometey local approach to brittle fracture: Development and application. Engineering Fracture Mechanics, 75(11), 3483-3498. doi:10.1016/j.engfracmech.2007.05.002
Shibanuma, K., Aihara, S., & Suzuki, K. (2016). Prediction model on cleavage fracture initiation in steels having ferrite–cementite microstructures – Part I: Model presentation. Engineering Fracture Mechanics, 151, 161-180. doi:10.1016/j.engfracmech.2015.03.048
Lei, W.-S. (2016). Fracture probability of a randomly oriented microcrack under multi-axial loading for the normal tensile stress criterion. Theoretical and Applied Fracture Mechanics, 85, 164-172. doi:10.1016/j.tafmec.2016.01.004
Lei, W.-S. (2017). A generalized weakest-link model for size effect on strength of quasi-brittle materials. Journal of Materials Science, 53(2), 1227-1245. doi:10.1007/s10853-017-1574-8
Chakraborti, P. C., Kundu, A., & Dutta, B. K. (2014). Weibull analysis of low temperature fracture stress data of 20MnMoNi55 and SA333 (Grade 6) steels. Materials Science and Engineering: A, 594, 89-97. doi:10.1016/j.msea.2013.11.023
Qian, G., Lei, W.-S., & Niffenegger, M. (2017). Calibration of a new local approach to cleavage fracture of ferritic steels. Materials Science and Engineering: A, 694, 10-12. doi:10.1016/j.msea.2017.03.111
Qian, G., Lei, W.-S., Peng, L., Yu, Z., & Niffenegger, M. (2017). Statistical assessment of notch toughness against cleavage fracture of ferritic steels. Fatigue & Fracture of Engineering Materials & Structures, 41(5), 1120-1131. doi:10.1111/ffe.12756
[-]