- -

On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Qian, G. es_ES
dc.contributor.author Lei, Wei-Sheng es_ES
dc.contributor.author Niffenegger, Markus es_ES
dc.contributor.author González Albuixech, Vicente Francisco es_ES
dc.date.accessioned 2020-06-02T05:37:25Z
dc.date.available 2020-06-02T05:37:25Z
dc.date.issued 2018-02-06 es_ES
dc.identifier.issn 1478-6435 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144821
dc.description.abstract [EN] The work relates to the effect of temperature on the model parameters in local approaches (LAs) to cleavage fracture. According to a recently developed LA model, the physical consensus of plastic deformation being a prerequisite to cleavage fracture enforces any LA model of cleavage fracture to observe initial yielding of a volume element as its threshold stress state to incur cleavage fracture in addition to the conventional practice of confining the fracture process zone within the plastic deformation zone. The physical consistency of the new LA model to the basic LA methodology and the differences between the new LA model and other existing models are interpreted. Then this new LA model is adopted to investigate the temperature dependence of LA model parameters using circumferentially notched round tensile specimens. With the published strength data as input, finite element (FE) calculation is conducted for elastic-perfectly plastic deformation and the realistic elastic-plastic hardening, respectively, to provide stress distributions for model calibration. The calibration results in temperature independent model parameters. This leads to the establishment of a master curve' characteristic to synchronise the correlation between the nominal strength and the corresponding cleavage fracture probability at different temperatures. This master curve' behaviour is verified by strength data from three different steels, providing a new path to calculate cleavage fracture probability with significantly reduced FE efforts. es_ES
dc.description.sponsorship Guian Qian and Markus Niffenegger are grateful for the financial support of the PROBAB Project by the Swiss Federal Nuclear Safety Inspectorate (ENSI) (DIS-Vertrag Nr. H-100668). es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Philosophical Magazine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ferritic steels es_ES
dc.subject Plastic yielding es_ES
dc.subject Cleavage fracture es_ES
dc.subject Statistical model es_ES
dc.subject Temperature effect es_ES
dc.subject Model calibration es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/14786435.2018.1425011 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ENSI//DIS-Vertrag Nr. H-100668/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Qian, G.; Lei, W.; Niffenegger, M.; González Albuixech, VF. (2018). On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels. Philosophical Magazine. 98(11):959-1004. https://doi.org/10.1080/14786435.2018.1425011 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/14786435.2018.1425011 es_ES
dc.description.upvformatpinicio 959 es_ES
dc.description.upvformatpfin 1004 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 98 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\352911 es_ES
dc.contributor.funder Eidgenössisches Nuklearsicherheitsinspektorat es_ES
dc.description.references Lei, W.-S. (2016). A framework for statistical modelling of plastic yielding initiated cleavage fracture of structural steels. Philosophical Magazine, 96(35), 3586-3631. doi:10.1080/14786435.2016.1232494 es_ES
dc.description.references Lei, W.-S. (2016). A cumulative failure probability model for cleavage fracture in ferritic steels. Mechanics of Materials, 93, 184-198. doi:10.1016/j.mechmat.2015.11.001 es_ES
dc.description.references Lei, W.-S. (2016). On the statistical modeling of cleavage fracture toughness of structural steels. Mechanics of Materials, 101, 81-92. doi:10.1016/j.mechmat.2016.07.009 es_ES
dc.description.references Qian, G., & Niffenegger, M. (2014). Deterministic and probabilistic analysis of a reactor pressure vessel subjected to pressurized thermal shocks. Nuclear Engineering and Design, 273, 381-395. doi:10.1016/j.nucengdes.2014.03.032 es_ES
dc.description.references Qian, G., González-Albuixech, V. F., & Niffenegger, M. (2014). Probabilistic assessment of a reactor pressure vessel subjected to pressurized thermal shocks by using crack distributions. Nuclear Engineering and Design, 270, 312-324. doi:10.1016/j.nucengdes.2013.12.062 es_ES
dc.description.references Landes, J., & Shaffer, D. (s. f.). Statistical Characterization of Fracture in the Transition Region. Fracture Mechanics, 368-368-15. doi:10.1520/stp36981s es_ES
dc.description.references Beremin, F. M., Pineau, A., Mudry, F., Devaux, J.-C., D’Escatha, Y., & Ledermann, P. (1983). A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metallurgical Transactions A, 14(11), 2277-2287. doi:10.1007/bf02663302 es_ES
dc.description.references Hojo, K., Muroya, I., & Brückner-Foit, A. (1997). Fracture toughness transition curve estimation from a notched round bar specimen using the local approach method. Nuclear Engineering and Design, 174(3), 247-258. doi:10.1016/s0029-5493(97)00125-8 es_ES
dc.description.references (2004). Fatigue & Fracture of Engineering Materials & Structures, 27(10). doi:10.1111/ffe.2004.27.issue-10 es_ES
dc.description.references Gao, X., Zhang, G., & Srivatsan, T. S. (2005). Prediction of cleavage fracture in ferritic steels: a modified Weibull stress model. Materials Science and Engineering: A, 394(1-2), 210-219. doi:10.1016/j.msea.2004.11.035 es_ES
dc.description.references Petti, J. P., & Dodds, R. H. (2005). Calibration of the Weibull stress scale parameter, σu, using the Master Curve. Engineering Fracture Mechanics, 72(1), 91-120. doi:10.1016/j.engfracmech.2004.03.009 es_ES
dc.description.references Pineau, A. (2006). Development of the Local Approach to Fracture over the Past 25 years: Theory and Applications. International Journal of Fracture, 138(1-4), 139-166. doi:10.1007/s10704-006-0035-1 es_ES
dc.description.references Qian, G., González-Albuixech, V. F., & Niffenegger, M. (2015). Calibration of Beremin model with the Master Curve. Engineering Fracture Mechanics, 136, 15-25. doi:10.1016/j.engfracmech.2015.02.003 es_ES
dc.description.references Ruggieri, C., & Dodds, R. H. (2015). An engineering methodology for constraint corrections of elastic–plastic fracture toughness – Part I: A review on probabilistic models and exploration of plastic strain effects. Engineering Fracture Mechanics, 134, 368-390. doi:10.1016/j.engfracmech.2014.12.015 es_ES
dc.description.references Moattari, M., Sattari-Far, I., Persechino, I., & Bonora, N. (2016). Prediction of fracture toughness in ductile-to-brittle transition region using combined CDM and Beremin models. Materials Science and Engineering: A, 657, 161-172. doi:10.1016/j.msea.2015.12.090 es_ES
dc.description.references Lei, W.-S. (2016). A statistical model of cleavage fracture in structural steels with power-law distribution of microcrack size. Philosophical Magazine Letters, 96(3), 101-111. doi:10.1080/09500839.2016.1158425 es_ES
dc.description.references Heerens, J., Pfuff, M., Hellmann, D., & Zerbst, U. (2002). The lower bound toughness procedure applied to the Euro fracture toughness dataset. Engineering Fracture Mechanics, 69(4), 483-495. doi:10.1016/s0013-7944(01)00069-8 es_ES
dc.description.references (2016). Fatigue & Fracture of Engineering Materials & Structures, 39(5). doi:10.1111/ffe.v39.5 es_ES
dc.description.references Lin, T., Evans, A. G., & Ritchie, R. O. (1986). A statistical model of brittle fracture by transgranular cleavage. Journal of the Mechanics and Physics of Solids, 34(5), 477-497. doi:10.1016/0022-5096(86)90013-x es_ES
dc.description.references Li, D., & Yao, M. (1996). A metallographic and fractographic study of the origin of cleavage fracture in mild steel. Materials Characterization, 36(1), 27-33. doi:10.1016/1044-5803(95)00236-7 es_ES
dc.description.references Chen, J. H., Wang, G. Z., & Wang, Q. (2002). Change of critical events of cleavage fracture with variation of microscopic features of low-alloy steels. Metallurgical and Materials Transactions A, 33(11), 3393-3402. doi:10.1007/s11661-002-0327-7 es_ES
dc.description.references Bordet, S. R., Karstensen, A. D., Knowles, D. M., & Wiesner, C. S. (2005). A new statistical local criterion for cleavage fracture in steel. Part I: model presentation. Engineering Fracture Mechanics, 72(3), 435-452. doi:10.1016/j.engfracmech.2004.02.009 es_ES
dc.description.references Scibetta, M. (2016). A cleavage fracture framework: New perspectives in cleavage modeling of ferritic steels. Engineering Fracture Mechanics, 160, 147-169. doi:10.1016/j.engfracmech.2016.03.047 es_ES
dc.description.references Pineau, A., Benzerga, A. A., & Pardoen, T. (2016). Failure of metals I: Brittle and ductile fracture. Acta Materialia, 107, 424-483. doi:10.1016/j.actamat.2015.12.034 es_ES
dc.description.references Mäntylä, M., Rossoll, A., Nedbal, I., Prioul, C., & Marini, B. (1999). Fractographic observations of cleavage fracture initiation in a bainitic A508 steel. Journal of Nuclear Materials, 264(3), 257-262. doi:10.1016/s0022-3115(98)00496-6 es_ES
dc.description.references Narström, T., & Isacsson, M. (1999). Microscopic investigation of cleavage initiation in modified A508B pressure vessel steel. Materials Science and Engineering: A, 271(1-2), 224-231. doi:10.1016/s0921-5093(99)00201-4 es_ES
dc.description.references Balart, M. J., Davis, C. L., & Strangwood, M. (2000). Cleavage initiation in Ti–V–N and V–N microalloyed ferritic–pearlitic forging steels. Materials Science and Engineering: A, 284(1-2), 1-13. doi:10.1016/s0921-5093(00)00803-0 es_ES
dc.description.references Bošanský, J., & Šmida, T. (2002). Deformation twins — probable inherent nuclei of cleavage fracture in ferritic steels. Materials Science and Engineering: A, 323(1-2), 198-205. doi:10.1016/s0921-5093(01)01350-8 es_ES
dc.description.references Balart, M. J., Davis, C. L., & Strangwood, M. (2004). Observations of cleavage initiation at (Ti,V)(C,N) particles of heterogeneous composition in microalloyed steels. Scripta Materialia, 50(3), 371-375. doi:10.1016/j.scriptamat.2003.10.009 es_ES
dc.description.references Echeverria, A. (2004). Cleavage micromechanisms on microalloyed steels. Evolution with temperature of some critical parameters. Scripta Materialia, 50(2), 307-312. doi:10.1016/j.scriptamat.2003.09.003 es_ES
dc.description.references Bose Filho, W. W., Carvalho, A. L. M., & Bowen, P. (2007). Micromechanisms of cleavage fracture initiation from inclusions in ferritic welds. Materials Science and Engineering: A, 452-453, 401-410. doi:10.1016/j.msea.2006.10.096 es_ES
dc.description.references Bose Filho, W. W., Carvalho, A. L. M., & Bowen, P. (2007). Micromechanisms of cleavage fracture initiation from inclusions in ferritic welds. Materials Science and Engineering: A, 460-461, 436-452. doi:10.1016/j.msea.2007.01.115 es_ES
dc.description.references Lan, L., Qiu, C., Song, H., & Zhao, D. (2014). Correlation of martensite–austenite constituent and cleavage crack initiation in welding heat affected zone of low carbon bainitic steel. Materials Letters, 125, 86-88. doi:10.1016/j.matlet.2014.03.123 es_ES
dc.description.references Asako, S., Kawabata, T., Aihara, S., Kimura, S., & Kagehira, K. (2016). Micro-processes of brittle fracture initiation in bainite steel manufactured by ausforming. Procedia Structural Integrity, 2, 3668-3675. doi:10.1016/j.prostr.2016.06.456 es_ES
dc.description.references Wang, G. ., Liu, Y. ., & Chen, J. . (2004). Investigation of cleavage fracture initiation in notched specimens of a C–Mn steel with carbides and inclusions. Materials Science and Engineering: A, 369(1-2), 181-191. doi:10.1016/j.msea.2003.11.003 es_ES
dc.description.references He, J., Lian, J., Golisch, G., He, A., Di, Y., & Münstermann, S. (2017). Investigation on micromechanism and stress state effects on cleavage fracture of ferritic-pearlitic steel at −196 °C. Materials Science and Engineering: A, 686, 134-141. doi:10.1016/j.msea.2017.01.042 es_ES
dc.description.references Lin, T., Evans, A. G., & Ritchie, R. O. (1987). Stochastic modeling of the independent roles of particle size and grain size in transgranular cleavage fracture. Metallurgical and Materials Transactions A, 18(4), 641-651. doi:10.1007/bf02649480 es_ES
dc.description.references Roberts, S. ., Noronha, S. ., Wilkinson, A. ., & Hirsch, P. . (2002). Modelling the initiation of cleavage fracture of ferritic steels. Acta Materialia, 50(5), 1229-1244. doi:10.1016/s1359-6454(01)00425-6 es_ES
dc.description.references San Martin, J. ., & Rodriguez-Ibabe, J. . (1999). Determination of energetic parameters controlling cleavage fracture in a Ti-V microalloyed ferrite-pearlite steel. Scripta Materialia, 40(4), 459-464. doi:10.1016/s1359-6462(98)00467-9 es_ES
dc.description.references Margolin, B. Z., Shvetsova, V. A., Gulenko, A. G., & Kostylev, V. I. (2008). Prometey local approach to brittle fracture: Development and application. Engineering Fracture Mechanics, 75(11), 3483-3498. doi:10.1016/j.engfracmech.2007.05.002 es_ES
dc.description.references Shibanuma, K., Aihara, S., & Suzuki, K. (2016). Prediction model on cleavage fracture initiation in steels having ferrite–cementite microstructures – Part I: Model presentation. Engineering Fracture Mechanics, 151, 161-180. doi:10.1016/j.engfracmech.2015.03.048 es_ES
dc.description.references Lei, W.-S. (2016). Fracture probability of a randomly oriented microcrack under multi-axial loading for the normal tensile stress criterion. Theoretical and Applied Fracture Mechanics, 85, 164-172. doi:10.1016/j.tafmec.2016.01.004 es_ES
dc.description.references Lei, W.-S. (2017). A generalized weakest-link model for size effect on strength of quasi-brittle materials. Journal of Materials Science, 53(2), 1227-1245. doi:10.1007/s10853-017-1574-8 es_ES
dc.description.references Chakraborti, P. C., Kundu, A., & Dutta, B. K. (2014). Weibull analysis of low temperature fracture stress data of 20MnMoNi55 and SA333 (Grade 6) steels. Materials Science and Engineering: A, 594, 89-97. doi:10.1016/j.msea.2013.11.023 es_ES
dc.description.references Qian, G., Lei, W.-S., & Niffenegger, M. (2017). Calibration of a new local approach to cleavage fracture of ferritic steels. Materials Science and Engineering: A, 694, 10-12. doi:10.1016/j.msea.2017.03.111 es_ES
dc.description.references Qian, G., Lei, W.-S., Peng, L., Yu, Z., & Niffenegger, M. (2017). Statistical assessment of notch toughness against cleavage fracture of ferritic steels. Fatigue & Fracture of Engineering Materials & Structures, 41(5), 1120-1131. doi:10.1111/ffe.12756 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem