Mostrar el registro sencillo del ítem
dc.contributor.author | Qian, G. | es_ES |
dc.contributor.author | Lei, Wei-Sheng | es_ES |
dc.contributor.author | Niffenegger, Markus | es_ES |
dc.contributor.author | González Albuixech, Vicente Francisco | es_ES |
dc.date.accessioned | 2020-06-02T05:37:25Z | |
dc.date.available | 2020-06-02T05:37:25Z | |
dc.date.issued | 2018-02-06 | es_ES |
dc.identifier.issn | 1478-6435 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144821 | |
dc.description.abstract | [EN] The work relates to the effect of temperature on the model parameters in local approaches (LAs) to cleavage fracture. According to a recently developed LA model, the physical consensus of plastic deformation being a prerequisite to cleavage fracture enforces any LA model of cleavage fracture to observe initial yielding of a volume element as its threshold stress state to incur cleavage fracture in addition to the conventional practice of confining the fracture process zone within the plastic deformation zone. The physical consistency of the new LA model to the basic LA methodology and the differences between the new LA model and other existing models are interpreted. Then this new LA model is adopted to investigate the temperature dependence of LA model parameters using circumferentially notched round tensile specimens. With the published strength data as input, finite element (FE) calculation is conducted for elastic-perfectly plastic deformation and the realistic elastic-plastic hardening, respectively, to provide stress distributions for model calibration. The calibration results in temperature independent model parameters. This leads to the establishment of a master curve' characteristic to synchronise the correlation between the nominal strength and the corresponding cleavage fracture probability at different temperatures. This master curve' behaviour is verified by strength data from three different steels, providing a new path to calculate cleavage fracture probability with significantly reduced FE efforts. | es_ES |
dc.description.sponsorship | Guian Qian and Markus Niffenegger are grateful for the financial support of the PROBAB Project by the Swiss Federal Nuclear Safety Inspectorate (ENSI) (DIS-Vertrag Nr. H-100668). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Philosophical Magazine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ferritic steels | es_ES |
dc.subject | Plastic yielding | es_ES |
dc.subject | Cleavage fracture | es_ES |
dc.subject | Statistical model | es_ES |
dc.subject | Temperature effect | es_ES |
dc.subject | Model calibration | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/14786435.2018.1425011 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ENSI//DIS-Vertrag Nr. H-100668/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Qian, G.; Lei, W.; Niffenegger, M.; González Albuixech, VF. (2018). On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels. Philosophical Magazine. 98(11):959-1004. https://doi.org/10.1080/14786435.2018.1425011 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/14786435.2018.1425011 | es_ES |
dc.description.upvformatpinicio | 959 | es_ES |
dc.description.upvformatpfin | 1004 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 98 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.pasarela | S\352911 | es_ES |
dc.contributor.funder | Eidgenössisches Nuklearsicherheitsinspektorat | es_ES |
dc.description.references | Lei, W.-S. (2016). A framework for statistical modelling of plastic yielding initiated cleavage fracture of structural steels. Philosophical Magazine, 96(35), 3586-3631. doi:10.1080/14786435.2016.1232494 | es_ES |
dc.description.references | Lei, W.-S. (2016). A cumulative failure probability model for cleavage fracture in ferritic steels. Mechanics of Materials, 93, 184-198. doi:10.1016/j.mechmat.2015.11.001 | es_ES |
dc.description.references | Lei, W.-S. (2016). On the statistical modeling of cleavage fracture toughness of structural steels. Mechanics of Materials, 101, 81-92. doi:10.1016/j.mechmat.2016.07.009 | es_ES |
dc.description.references | Qian, G., & Niffenegger, M. (2014). Deterministic and probabilistic analysis of a reactor pressure vessel subjected to pressurized thermal shocks. Nuclear Engineering and Design, 273, 381-395. doi:10.1016/j.nucengdes.2014.03.032 | es_ES |
dc.description.references | Qian, G., González-Albuixech, V. F., & Niffenegger, M. (2014). Probabilistic assessment of a reactor pressure vessel subjected to pressurized thermal shocks by using crack distributions. Nuclear Engineering and Design, 270, 312-324. doi:10.1016/j.nucengdes.2013.12.062 | es_ES |
dc.description.references | Landes, J., & Shaffer, D. (s. f.). Statistical Characterization of Fracture in the Transition Region. Fracture Mechanics, 368-368-15. doi:10.1520/stp36981s | es_ES |
dc.description.references | Beremin, F. M., Pineau, A., Mudry, F., Devaux, J.-C., D’Escatha, Y., & Ledermann, P. (1983). A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metallurgical Transactions A, 14(11), 2277-2287. doi:10.1007/bf02663302 | es_ES |
dc.description.references | Hojo, K., Muroya, I., & Brückner-Foit, A. (1997). Fracture toughness transition curve estimation from a notched round bar specimen using the local approach method. Nuclear Engineering and Design, 174(3), 247-258. doi:10.1016/s0029-5493(97)00125-8 | es_ES |
dc.description.references | (2004). Fatigue & Fracture of Engineering Materials & Structures, 27(10). doi:10.1111/ffe.2004.27.issue-10 | es_ES |
dc.description.references | Gao, X., Zhang, G., & Srivatsan, T. S. (2005). Prediction of cleavage fracture in ferritic steels: a modified Weibull stress model. Materials Science and Engineering: A, 394(1-2), 210-219. doi:10.1016/j.msea.2004.11.035 | es_ES |
dc.description.references | Petti, J. P., & Dodds, R. H. (2005). Calibration of the Weibull stress scale parameter, σu, using the Master Curve. Engineering Fracture Mechanics, 72(1), 91-120. doi:10.1016/j.engfracmech.2004.03.009 | es_ES |
dc.description.references | Pineau, A. (2006). Development of the Local Approach to Fracture over the Past 25 years: Theory and Applications. International Journal of Fracture, 138(1-4), 139-166. doi:10.1007/s10704-006-0035-1 | es_ES |
dc.description.references | Qian, G., González-Albuixech, V. F., & Niffenegger, M. (2015). Calibration of Beremin model with the Master Curve. Engineering Fracture Mechanics, 136, 15-25. doi:10.1016/j.engfracmech.2015.02.003 | es_ES |
dc.description.references | Ruggieri, C., & Dodds, R. H. (2015). An engineering methodology for constraint corrections of elastic–plastic fracture toughness – Part I: A review on probabilistic models and exploration of plastic strain effects. Engineering Fracture Mechanics, 134, 368-390. doi:10.1016/j.engfracmech.2014.12.015 | es_ES |
dc.description.references | Moattari, M., Sattari-Far, I., Persechino, I., & Bonora, N. (2016). Prediction of fracture toughness in ductile-to-brittle transition region using combined CDM and Beremin models. Materials Science and Engineering: A, 657, 161-172. doi:10.1016/j.msea.2015.12.090 | es_ES |
dc.description.references | Lei, W.-S. (2016). A statistical model of cleavage fracture in structural steels with power-law distribution of microcrack size. Philosophical Magazine Letters, 96(3), 101-111. doi:10.1080/09500839.2016.1158425 | es_ES |
dc.description.references | Heerens, J., Pfuff, M., Hellmann, D., & Zerbst, U. (2002). The lower bound toughness procedure applied to the Euro fracture toughness dataset. Engineering Fracture Mechanics, 69(4), 483-495. doi:10.1016/s0013-7944(01)00069-8 | es_ES |
dc.description.references | (2016). Fatigue & Fracture of Engineering Materials & Structures, 39(5). doi:10.1111/ffe.v39.5 | es_ES |
dc.description.references | Lin, T., Evans, A. G., & Ritchie, R. O. (1986). A statistical model of brittle fracture by transgranular cleavage. Journal of the Mechanics and Physics of Solids, 34(5), 477-497. doi:10.1016/0022-5096(86)90013-x | es_ES |
dc.description.references | Li, D., & Yao, M. (1996). A metallographic and fractographic study of the origin of cleavage fracture in mild steel. Materials Characterization, 36(1), 27-33. doi:10.1016/1044-5803(95)00236-7 | es_ES |
dc.description.references | Chen, J. H., Wang, G. Z., & Wang, Q. (2002). Change of critical events of cleavage fracture with variation of microscopic features of low-alloy steels. Metallurgical and Materials Transactions A, 33(11), 3393-3402. doi:10.1007/s11661-002-0327-7 | es_ES |
dc.description.references | Bordet, S. R., Karstensen, A. D., Knowles, D. M., & Wiesner, C. S. (2005). A new statistical local criterion for cleavage fracture in steel. Part I: model presentation. Engineering Fracture Mechanics, 72(3), 435-452. doi:10.1016/j.engfracmech.2004.02.009 | es_ES |
dc.description.references | Scibetta, M. (2016). A cleavage fracture framework: New perspectives in cleavage modeling of ferritic steels. Engineering Fracture Mechanics, 160, 147-169. doi:10.1016/j.engfracmech.2016.03.047 | es_ES |
dc.description.references | Pineau, A., Benzerga, A. A., & Pardoen, T. (2016). Failure of metals I: Brittle and ductile fracture. Acta Materialia, 107, 424-483. doi:10.1016/j.actamat.2015.12.034 | es_ES |
dc.description.references | Mäntylä, M., Rossoll, A., Nedbal, I., Prioul, C., & Marini, B. (1999). Fractographic observations of cleavage fracture initiation in a bainitic A508 steel. Journal of Nuclear Materials, 264(3), 257-262. doi:10.1016/s0022-3115(98)00496-6 | es_ES |
dc.description.references | Narström, T., & Isacsson, M. (1999). Microscopic investigation of cleavage initiation in modified A508B pressure vessel steel. Materials Science and Engineering: A, 271(1-2), 224-231. doi:10.1016/s0921-5093(99)00201-4 | es_ES |
dc.description.references | Balart, M. J., Davis, C. L., & Strangwood, M. (2000). Cleavage initiation in Ti–V–N and V–N microalloyed ferritic–pearlitic forging steels. Materials Science and Engineering: A, 284(1-2), 1-13. doi:10.1016/s0921-5093(00)00803-0 | es_ES |
dc.description.references | Bošanský, J., & Šmida, T. (2002). Deformation twins — probable inherent nuclei of cleavage fracture in ferritic steels. Materials Science and Engineering: A, 323(1-2), 198-205. doi:10.1016/s0921-5093(01)01350-8 | es_ES |
dc.description.references | Balart, M. J., Davis, C. L., & Strangwood, M. (2004). Observations of cleavage initiation at (Ti,V)(C,N) particles of heterogeneous composition in microalloyed steels. Scripta Materialia, 50(3), 371-375. doi:10.1016/j.scriptamat.2003.10.009 | es_ES |
dc.description.references | Echeverria, A. (2004). Cleavage micromechanisms on microalloyed steels. Evolution with temperature of some critical parameters. Scripta Materialia, 50(2), 307-312. doi:10.1016/j.scriptamat.2003.09.003 | es_ES |
dc.description.references | Bose Filho, W. W., Carvalho, A. L. M., & Bowen, P. (2007). Micromechanisms of cleavage fracture initiation from inclusions in ferritic welds. Materials Science and Engineering: A, 452-453, 401-410. doi:10.1016/j.msea.2006.10.096 | es_ES |
dc.description.references | Bose Filho, W. W., Carvalho, A. L. M., & Bowen, P. (2007). Micromechanisms of cleavage fracture initiation from inclusions in ferritic welds. Materials Science and Engineering: A, 460-461, 436-452. doi:10.1016/j.msea.2007.01.115 | es_ES |
dc.description.references | Lan, L., Qiu, C., Song, H., & Zhao, D. (2014). Correlation of martensite–austenite constituent and cleavage crack initiation in welding heat affected zone of low carbon bainitic steel. Materials Letters, 125, 86-88. doi:10.1016/j.matlet.2014.03.123 | es_ES |
dc.description.references | Asako, S., Kawabata, T., Aihara, S., Kimura, S., & Kagehira, K. (2016). Micro-processes of brittle fracture initiation in bainite steel manufactured by ausforming. Procedia Structural Integrity, 2, 3668-3675. doi:10.1016/j.prostr.2016.06.456 | es_ES |
dc.description.references | Wang, G. ., Liu, Y. ., & Chen, J. . (2004). Investigation of cleavage fracture initiation in notched specimens of a C–Mn steel with carbides and inclusions. Materials Science and Engineering: A, 369(1-2), 181-191. doi:10.1016/j.msea.2003.11.003 | es_ES |
dc.description.references | He, J., Lian, J., Golisch, G., He, A., Di, Y., & Münstermann, S. (2017). Investigation on micromechanism and stress state effects on cleavage fracture of ferritic-pearlitic steel at −196 °C. Materials Science and Engineering: A, 686, 134-141. doi:10.1016/j.msea.2017.01.042 | es_ES |
dc.description.references | Lin, T., Evans, A. G., & Ritchie, R. O. (1987). Stochastic modeling of the independent roles of particle size and grain size in transgranular cleavage fracture. Metallurgical and Materials Transactions A, 18(4), 641-651. doi:10.1007/bf02649480 | es_ES |
dc.description.references | Roberts, S. ., Noronha, S. ., Wilkinson, A. ., & Hirsch, P. . (2002). Modelling the initiation of cleavage fracture of ferritic steels. Acta Materialia, 50(5), 1229-1244. doi:10.1016/s1359-6454(01)00425-6 | es_ES |
dc.description.references | San Martin, J. ., & Rodriguez-Ibabe, J. . (1999). Determination of energetic parameters controlling cleavage fracture in a Ti-V microalloyed ferrite-pearlite steel. Scripta Materialia, 40(4), 459-464. doi:10.1016/s1359-6462(98)00467-9 | es_ES |
dc.description.references | Margolin, B. Z., Shvetsova, V. A., Gulenko, A. G., & Kostylev, V. I. (2008). Prometey local approach to brittle fracture: Development and application. Engineering Fracture Mechanics, 75(11), 3483-3498. doi:10.1016/j.engfracmech.2007.05.002 | es_ES |
dc.description.references | Shibanuma, K., Aihara, S., & Suzuki, K. (2016). Prediction model on cleavage fracture initiation in steels having ferrite–cementite microstructures – Part I: Model presentation. Engineering Fracture Mechanics, 151, 161-180. doi:10.1016/j.engfracmech.2015.03.048 | es_ES |
dc.description.references | Lei, W.-S. (2016). Fracture probability of a randomly oriented microcrack under multi-axial loading for the normal tensile stress criterion. Theoretical and Applied Fracture Mechanics, 85, 164-172. doi:10.1016/j.tafmec.2016.01.004 | es_ES |
dc.description.references | Lei, W.-S. (2017). A generalized weakest-link model for size effect on strength of quasi-brittle materials. Journal of Materials Science, 53(2), 1227-1245. doi:10.1007/s10853-017-1574-8 | es_ES |
dc.description.references | Chakraborti, P. C., Kundu, A., & Dutta, B. K. (2014). Weibull analysis of low temperature fracture stress data of 20MnMoNi55 and SA333 (Grade 6) steels. Materials Science and Engineering: A, 594, 89-97. doi:10.1016/j.msea.2013.11.023 | es_ES |
dc.description.references | Qian, G., Lei, W.-S., & Niffenegger, M. (2017). Calibration of a new local approach to cleavage fracture of ferritic steels. Materials Science and Engineering: A, 694, 10-12. doi:10.1016/j.msea.2017.03.111 | es_ES |
dc.description.references | Qian, G., Lei, W.-S., Peng, L., Yu, Z., & Niffenegger, M. (2017). Statistical assessment of notch toughness against cleavage fracture of ferritic steels. Fatigue & Fracture of Engineering Materials & Structures, 41(5), 1120-1131. doi:10.1111/ffe.12756 | es_ES |