- -

Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aldas-Carrasco, Miguel Fernando es_ES
dc.contributor.author Pavón-Vargas, Cristina Paola es_ES
dc.contributor.author López-Martínez, Juan es_ES
dc.contributor.author Arrieta, Marina Patricia es_ES
dc.date.accessioned 2020-06-02T05:37:31Z
dc.date.available 2020-06-02T05:37:31Z
dc.date.issued 2020-04-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144823
dc.description.abstract [EN] Fully bio-based materials based on thermoplastic starch (TPS) were developed starting from corn starch plasticized with glycerol. The obtained TPS was further blended with five pine resin derivatives: gum rosin (GR), disproportionated gum rosin (dehydroabietic acid, RD), maleic anhydride modified gum rosin (CM), pentaerythritol ester of gum rosin (LF), and glycerol ester of gum rosin (UG). The TPS¿resin blend formulations were processed by melt extrusion and further by injection moulding to simulate the industrial conditions. The obtained materials were characterized in terms of mechanical, thermal and structural properties. The results showed that all gum rosin-based additives were able to improve the thermal stability of TPS, increasing the degradation onset temperature. The carbonyl groups of gum rosin derivatives were able to interact with the hydroxyl groups of starch and glycerol by means of hydrogen bond interactions producing a significant increase of the glass transition temperature with a consequent stiffening effect, which in turn improve the overall mechanical performance of the TPS-resin injected moulded blends. The developed TPS¿resin blends are of interest for rigid packaging applications. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Economy and Competitiveness (MINECO), project: PROMADEPCOL (MAT2017-84909-C2-2-R) as well as by Santander-UCM (PR87/19-22628) project. M.A. thanks Secretaria Nacional de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT-Ecuador) and Escuela Politécnica Nacional. C.P. thanks Santiago Grisolía fellowship (GRISOLIAP/2019/113) from Generalitat Valenciana and M.P.A. thanks MINECO for her postdoctoral contract: Juan de la Cierva-Incorporación (FJCI-2017-33536). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bioplastic es_ES
dc.subject Corn starch es_ES
dc.subject Glycerol es_ES
dc.subject Thermoplastic starch es_ES
dc.subject Gum rosin es_ES
dc.subject Injection-moulding es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10072561 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UCM//PR87%2F19-22628/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//FJCI-2017-33536/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2019%2F113/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Aldas-Carrasco, MF.; Pavón-Vargas, CP.; López-Martínez, J.; Arrieta, MP. (2020). Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch. Applied Sciences. 10(7):1-17. https://doi.org/10.3390/app10072561 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10072561 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\407338 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Santander Universidades es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universidad Complutense de Madrid es_ES
dc.contributor.funder Escuela Politécnica Nacional, Ecuador es_ES
dc.contributor.funder Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador es_ES
dc.description.references An Analysis of European Plastics Production, Demand and Waste Data https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf es_ES
dc.description.references Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008 es_ES
dc.description.references Avérous, L. (2004). Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44(3), 231-274. doi:10.1081/mc-200029326 es_ES
dc.description.references Auras, R., Harte, B., & Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, 4(9), 835-864. doi:10.1002/mabi.200400043 es_ES
dc.description.references Aldas, M., Ferri, J. M., Lopez‐Martinez, J., Samper, M. D., & Arrieta, M. P. (2019). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. doi:10.1002/app.48236 es_ES
dc.description.references Aldas, M., Paladines, A., Valle, V., Pazmiño, M., & Quiroz, F. (2018). Effect of the Prodegradant-Additive Plastics Incorporated on the Polyethylene Recycling. International Journal of Polymer Science, 2018, 1-10. doi:10.1155/2018/2474176 es_ES
dc.description.references Simon, J., Müller, H. P., Koch, R., & Müller, V. (1998). Thermoplastic and biodegradable polymers of cellulose. Polymer Degradation and Stability, 59(1-3), 107-115. doi:10.1016/s0141-3910(97)00151-1 es_ES
dc.description.references Arrieta, M. P., Fortunati, E., Burgos, N., Peltzer, M. A., López, J., & Peponi, L. (2016). Nanocellulose-Based Polymeric Blends for Food Packaging Applications. Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements, 205-252. doi:10.1016/b978-0-323-44248-0.00007-9 es_ES
dc.description.references Sadeghifar, H., Cui, C., & Argyropoulos, D. S. (2012). Toward Thermoplastic Lignin Polymers. Part 1. Selective Masking of Phenolic Hydroxyl Groups in Kraft Lignins via Methylation and Oxypropylation Chemistries. Industrial & Engineering Chemistry Research, 51(51), 16713-16720. doi:10.1021/ie301848j es_ES
dc.description.references Wilbon, P. A., Chu, F., & Tang, C. (2012). Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 34(1), 8-37. doi:10.1002/marc.201200513 es_ES
dc.description.references Liu, C., Liu, F., Cai, J., Xie, W., Long, T. E., Turner, S. R., … Gross, R. A. (2011). Polymers from Fatty Acids: Poly(ω-hydroxyl tetradecanoic acid) Synthesis and Physico-Mechanical Studies. Biomacromolecules, 12(9), 3291-3298. doi:10.1021/bm2007554 es_ES
dc.description.references Galbis, J. A., García-Martín, M. de G., de Paz, M. V., & Galbis, E. (2015). Synthetic Polymers from Sugar-Based Monomers. Chemical Reviews, 116(3), 1600-1636. doi:10.1021/acs.chemrev.5b00242 es_ES
dc.description.references Lu, D. R., Xiao, C. M., & Xu, S. J. (2009). Starch-based completely biodegradable polymer materials. Express Polymer Letters, 3(6), 366-375. doi:10.3144/expresspolymlett.2009.46 es_ES
dc.description.references Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties. Carbohydrate Polymers, 197, 305-311. doi:10.1016/j.carbpol.2018.06.017 es_ES
dc.description.references Sessini, V., Arrieta, M. P., Fernández-Torres, A., & Peponi, L. (2018). Humidity-activated shape memory effect on plasticized starch-based biomaterials. Carbohydrate Polymers, 179, 93-99. doi:10.1016/j.carbpol.2017.09.070 es_ES
dc.description.references Angellier, H., Molina-Boisseau, S., Dole, P., & Dufresne, A. (2006). Thermoplastic Starch−Waxy Maize Starch Nanocrystals Nanocomposites. Biomacromolecules, 7(2), 531-539. doi:10.1021/bm050797s es_ES
dc.description.references Jiugao, Y., Ning, W., & Xiaofei, M. (2005). The Effects of Citric Acid on the Properties of Thermoplastic Starch Plasticized by Glycerol. Starch - Stärke, 57(10), 494-504. doi:10.1002/star.200500423 es_ES
dc.description.references Arrieta, M. P., Peltzer, M. A., Garrigós, M. del C., & Jiménez, A. (2013). Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. Journal of Food Engineering, 114(4), 486-494. doi:10.1016/j.jfoodeng.2012.09.002 es_ES
dc.description.references Montava-Jordà, S., Torres-Giner, S., Ferrandiz-Bou, S., Quiles-Carrillo, L., & Montanes, N. (2019). Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. International Journal of Molecular Sciences, 20(6), 1378. doi:10.3390/ijms20061378 es_ES
dc.description.references European Parliamentary Research Service http://www.europarl.europa.eu/RegData/etudes/ATAG/2018/625163/EPRS_ATA_ATA(2018)625163_EN.pdf es_ES
dc.description.references Sarasini, F., Puglia, D., Fortunati, E., Kenny, J. M., & Santulli, C. (2013). Effect of Fiber Surface Treatments on Thermo-Mechanical Behavior of Poly(Lactic Acid)/Phormium Tenax Composites. Journal of Polymers and the Environment, 21(3), 881-891. doi:10.1007/s10924-013-0594-y es_ES
dc.description.references Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. doi:10.1016/j.eurpolymj.2013.01.019 es_ES
dc.description.references Samper, M., Bertomeu, D., Arrieta, M., Ferri, J., & López-Martínez, J. (2018). Interference of Biodegradable Plastics in the Polypropylene Recycling Process. Materials, 11(10), 1886. doi:10.3390/ma11101886 es_ES
dc.description.references Dolores, S. M., Marina Patricia, A., Santiago, F., & Juan, L. (2014). Influence of biodegradable materials in the recycled polystyrene. Journal of Applied Polymer Science, 131(23), n/a-n/a. doi:10.1002/app.41161 es_ES
dc.description.references Samper-Madrigal, M. D., Fenollar, O., Dominici, F., Balart, R., & Kenny, J. M. (2014). The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 50(2), 863-872. doi:10.1007/s10853-014-8647-8 es_ES
dc.description.references Sessini, V., Arrieta, M. P., Raquez, J.-M., Dubois, P., Kenny, J. M., & Peponi, L. (2019). Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability, 159, 184-198. doi:10.1016/j.polymdegradstab.2018.11.025 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751 es_ES
dc.description.references Garrido-Miranda, K. A., Rivas, B. L., Pérez -Rivera, M. A., Sanfuentes, E. A., & Peña-Farfal, C. (2018). Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly(3-hydroxybutyrate)-thermoplastic starch. LWT, 98, 260-267. doi:10.1016/j.lwt.2018.08.046 es_ES
dc.description.references Yadav, B. K., Gidwani, B., & Vyas, A. (2015). Rosin: Recent advances and potential applications in novel drug delivery system. Journal of Bioactive and Compatible Polymers, 31(2), 111-126. doi:10.1177/0883911515601867 es_ES
dc.description.references Rodríguez-García, A., Martín, J. A., López, R., Sanz, A., & Gil, L. (2016). Effect of four tapping methods on anatomical traits and resin yield in Maritime pine (Pinus pinaster Ait.). Industrial Crops and Products, 86, 143-154. doi:10.1016/j.indcrop.2016.03.033 es_ES
dc.description.references Llevot, A., Grau, E., Carlotti, S., Grelier, S., & Cramail, H. (2015). Dimerization of abietic acid for the design of renewable polymers by ADMET. European Polymer Journal, 67, 409-417. doi:10.1016/j.eurpolymj.2014.10.021 es_ES
dc.description.references Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009 es_ES
dc.description.references Yao, K., & Tang, C. (2013). Controlled Polymerization of Next-Generation Renewable Monomers and Beyond. Macromolecules, 46(5), 1689-1712. doi:10.1021/ma3019574 es_ES
dc.description.references Gandini, A., & Lacerda, T. M. (2015). From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science, 48, 1-39. doi:10.1016/j.progpolymsci.2014.11.002 es_ES
dc.description.references Kumooka, Y. (2008). Analysis of rosin and modified rosin esters in adhesives by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Forensic Science International, 176(2-3), 111-120. doi:10.1016/j.forsciint.2007.07.009 es_ES
dc.description.references Aldas, M., Rayón, E., López-Martínez, J., & Arrieta, M. P. (2020). A Deeper Microscopic Study of the Interaction between Gum Rosin Derivatives and a Mater-Bi Type Bioplastic. Polymers, 12(1), 226. doi:10.3390/polym12010226 es_ES
dc.description.references Bucci, D. Z., Tavares, L. B. B., & Sell, I. (2005). PHB packaging for the storage of food products. Polymer Testing, 24(5), 564-571. doi:10.1016/j.polymertesting.2005.02.008 es_ES
dc.description.references Barbosa, S. E., & Kenny, J. M. (1999). Processing of short fiber reinforced polypropylene. II: Statistical study of the effects of processing conditions on the impact strength. Polymer Engineering & Science, 39(10), 1880-1890. doi:10.1002/pen.11581 es_ES
dc.description.references Olivato, J. B., Grossmann, M. V. E., Bilck, A. P., & Yamashita, F. (2012). Effect of organic acids as additives on the performance of thermoplastic starch/polyester blown films. Carbohydrate Polymers, 90(1), 159-164. doi:10.1016/j.carbpol.2012.05.009 es_ES
dc.description.references Narayanan, M., Loganathan, S., Valapa, R. B., Thomas, S., & Varghese, T. O. (2017). UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules, 99, 37-45. doi:10.1016/j.ijbiomac.2017.01.152 es_ES
dc.description.references Pavon, C., Aldas, M., López-Martínez, J., & Ferrándiz, S. (2020). New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives. Polymers, 12(2), 334. doi:10.3390/polym12020334 es_ES
dc.description.references Bergström, J. (2015). Experimental Characterization Techniques. Mechanics of Solid Polymers, 19-114. doi:10.1016/b978-0-323-31150-2.00002-9 es_ES
dc.description.references Wattanakornsiri, A., Pachana, K., Kaewpirom, S., Traina, M., & Migliaresi, C. (2012). Preparation and Properties of Green Composites Based on Tapioca Starch and Differently Recycled Paper Cellulose Fibers. Journal of Polymers and the Environment, 20(3), 801-809. doi:10.1007/s10924-012-0494-6 es_ES
dc.description.references Forssell, P. M., Mikkilä, J. M., Moates, G. K., & Parker, R. (1997). Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch. Carbohydrate Polymers, 34(4), 275-282. doi:10.1016/s0144-8617(97)00133-1 es_ES
dc.description.references Karlberg, A.-T. (2012). Colophony: Rosin in Unmodified and Modified Form. Kanerva’s Occupational Dermatology, 467-479. doi:10.1007/978-3-642-02035-3_41 es_ES
dc.description.references Liu, C., Yu, J., Sun, X., Zhang, J., & He, J. (2003). Thermal degradation studies of cyclic olefin copolymers. Polymer Degradation and Stability, 81(2), 197-205. doi:10.1016/s0141-3910(03)00089-2 es_ES
dc.description.references Teixeira, E. de M., Pasquini, D., Curvelo, A. A. S., Corradini, E., Belgacem, M. N., & Dufresne, A. (2009). Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydrate Polymers, 78(3), 422-431. doi:10.1016/j.carbpol.2009.04.034 es_ES
dc.description.references Sessini, V., Arrieta, M. P., Kenny, J. M., & Peponi, L. (2016). Processing of edible films based on nanoreinforced gelatinized starch. Polymer Degradation and Stability, 132, 157-168. doi:10.1016/j.polymdegradstab.2016.02.026 es_ES
dc.description.references Cerruti, P., Santagata, G., Gomez d’Ayala, G., Ambrogi, V., Carfagna, C., Malinconico, M., & Persico, P. (2011). Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer. Polymer Degradation and Stability, 96(5), 839-846. doi:10.1016/j.polymdegradstab.2011.02.003 es_ES
dc.description.references Mendes, J. F., Paschoalin, R. ., Carmona, V. B., Sena Neto, A. R., Marques, A. C. P., Marconcini, J. M., … Oliveira, J. E. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452-458. doi:10.1016/j.carbpol.2015.10.093 es_ES
dc.description.references Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), 3912-3918. doi:10.1021/jf011652p es_ES
dc.description.references Dang, K. M., & Yoksan, R. (2015). Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydrate Polymers, 115, 575-581. doi:10.1016/j.carbpol.2014.09.005 es_ES
dc.description.references El-Ghazawy, R. A., El-Saeed, A. M., Al-Shafey, H. I., Abdul-Raheim, A.-R. M., & El-Sockary, M. A. (2015). Rosin based epoxy coating: Synthesis, identification and characterization. European Polymer Journal, 69, 403-415. doi:10.1016/j.eurpolymj.2015.06.025 es_ES
dc.description.references Campos, A., Teodoro, K. B. R., Teixeira, E. M., Corrêa, A. C., Marconcini, J. M., Wood, D. F., … Mattoso, L. H. C. (2012). Properties of thermoplastic starch and TPS/polycaprolactone blend reinforced with sisal whiskers using extrusion processing. Polymer Engineering & Science, 53(4), 800-808. doi:10.1002/pen.23324 es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem