- -

Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch

Mostrar el registro completo del ítem

Aldas-Carrasco, MF.; Pavón-Vargas, CP.; López-Martínez, J.; Arrieta, MP. (2020). Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch. Applied Sciences. 10(7):1-17. https://doi.org/10.3390/app10072561

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144823

Ficheros en el ítem

Metadatos del ítem

Título: Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch
Autor: Aldas-Carrasco, Miguel Fernando Pavón-Vargas, Cristina Paola López-Martínez, Juan Arrieta, Marina Patricia
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] Fully bio-based materials based on thermoplastic starch (TPS) were developed starting from corn starch plasticized with glycerol. The obtained TPS was further blended with five pine resin derivatives: gum rosin (GR), ...[+]
Palabras clave: Bioplastic , Corn starch , Glycerol , Thermoplastic starch , Gum rosin , Injection-moulding
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app10072561
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app10072561
Código del Proyecto:
info:eu-repo/grantAgreement/UCM//PR87%2F19-22628/
info:eu-repo/grantAgreement/AEI//FJCI-2017-33536/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2019%2F113/
Agradecimientos:
This research was funded by the Spanish Ministry of Economy and Competitiveness (MINECO), project: PROMADEPCOL (MAT2017-84909-C2-2-R) as well as by Santander-UCM (PR87/19-22628) project. M.A. thanks Secretaria Nacional de ...[+]
Tipo: Artículo

References

An Analysis of European Plastics Production, Demand and Waste Data https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf

Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008

Avérous, L. (2004). Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44(3), 231-274. doi:10.1081/mc-200029326 [+]
An Analysis of European Plastics Production, Demand and Waste Data https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf

Arrieta, M., Samper, M., Aldas, M., & López, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 10(9), 1008. doi:10.3390/ma10091008

Avérous, L. (2004). Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44(3), 231-274. doi:10.1081/mc-200029326

Auras, R., Harte, B., & Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, 4(9), 835-864. doi:10.1002/mabi.200400043

Aldas, M., Ferri, J. M., Lopez‐Martinez, J., Samper, M. D., & Arrieta, M. P. (2019). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. doi:10.1002/app.48236

Aldas, M., Paladines, A., Valle, V., Pazmiño, M., & Quiroz, F. (2018). Effect of the Prodegradant-Additive Plastics Incorporated on the Polyethylene Recycling. International Journal of Polymer Science, 2018, 1-10. doi:10.1155/2018/2474176

Simon, J., Müller, H. P., Koch, R., & Müller, V. (1998). Thermoplastic and biodegradable polymers of cellulose. Polymer Degradation and Stability, 59(1-3), 107-115. doi:10.1016/s0141-3910(97)00151-1

Arrieta, M. P., Fortunati, E., Burgos, N., Peltzer, M. A., López, J., & Peponi, L. (2016). Nanocellulose-Based Polymeric Blends for Food Packaging Applications. Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements, 205-252. doi:10.1016/b978-0-323-44248-0.00007-9

Sadeghifar, H., Cui, C., & Argyropoulos, D. S. (2012). Toward Thermoplastic Lignin Polymers. Part 1. Selective Masking of Phenolic Hydroxyl Groups in Kraft Lignins via Methylation and Oxypropylation Chemistries. Industrial & Engineering Chemistry Research, 51(51), 16713-16720. doi:10.1021/ie301848j

Wilbon, P. A., Chu, F., & Tang, C. (2012). Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 34(1), 8-37. doi:10.1002/marc.201200513

Liu, C., Liu, F., Cai, J., Xie, W., Long, T. E., Turner, S. R., … Gross, R. A. (2011). Polymers from Fatty Acids: Poly(ω-hydroxyl tetradecanoic acid) Synthesis and Physico-Mechanical Studies. Biomacromolecules, 12(9), 3291-3298. doi:10.1021/bm2007554

Galbis, J. A., García-Martín, M. de G., de Paz, M. V., & Galbis, E. (2015). Synthetic Polymers from Sugar-Based Monomers. Chemical Reviews, 116(3), 1600-1636. doi:10.1021/acs.chemrev.5b00242

Lu, D. R., Xiao, C. M., & Xu, S. J. (2009). Starch-based completely biodegradable polymer materials. Express Polymer Letters, 3(6), 366-375. doi:10.3144/expresspolymlett.2009.46

Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties. Carbohydrate Polymers, 197, 305-311. doi:10.1016/j.carbpol.2018.06.017

Sessini, V., Arrieta, M. P., Fernández-Torres, A., & Peponi, L. (2018). Humidity-activated shape memory effect on plasticized starch-based biomaterials. Carbohydrate Polymers, 179, 93-99. doi:10.1016/j.carbpol.2017.09.070

Angellier, H., Molina-Boisseau, S., Dole, P., & Dufresne, A. (2006). Thermoplastic Starch−Waxy Maize Starch Nanocrystals Nanocomposites. Biomacromolecules, 7(2), 531-539. doi:10.1021/bm050797s

Jiugao, Y., Ning, W., & Xiaofei, M. (2005). The Effects of Citric Acid on the Properties of Thermoplastic Starch Plasticized by Glycerol. Starch - Stärke, 57(10), 494-504. doi:10.1002/star.200500423

Arrieta, M. P., Peltzer, M. A., Garrigós, M. del C., & Jiménez, A. (2013). Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. Journal of Food Engineering, 114(4), 486-494. doi:10.1016/j.jfoodeng.2012.09.002

Montava-Jordà, S., Torres-Giner, S., Ferrandiz-Bou, S., Quiles-Carrillo, L., & Montanes, N. (2019). Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. International Journal of Molecular Sciences, 20(6), 1378. doi:10.3390/ijms20061378

European Parliamentary Research Service http://www.europarl.europa.eu/RegData/etudes/ATAG/2018/625163/EPRS_ATA_ATA(2018)625163_EN.pdf

Sarasini, F., Puglia, D., Fortunati, E., Kenny, J. M., & Santulli, C. (2013). Effect of Fiber Surface Treatments on Thermo-Mechanical Behavior of Poly(Lactic Acid)/Phormium Tenax Composites. Journal of Polymers and the Environment, 21(3), 881-891. doi:10.1007/s10924-013-0594-y

Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. doi:10.1016/j.eurpolymj.2013.01.019

Samper, M., Bertomeu, D., Arrieta, M., Ferri, J., & López-Martínez, J. (2018). Interference of Biodegradable Plastics in the Polypropylene Recycling Process. Materials, 11(10), 1886. doi:10.3390/ma11101886

Dolores, S. M., Marina Patricia, A., Santiago, F., & Juan, L. (2014). Influence of biodegradable materials in the recycled polystyrene. Journal of Applied Polymer Science, 131(23), n/a-n/a. doi:10.1002/app.41161

Samper-Madrigal, M. D., Fenollar, O., Dominici, F., Balart, R., & Kenny, J. M. (2014). The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 50(2), 863-872. doi:10.1007/s10853-014-8647-8

Sessini, V., Arrieta, M. P., Raquez, J.-M., Dubois, P., Kenny, J. M., & Peponi, L. (2019). Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability, 159, 184-198. doi:10.1016/j.polymdegradstab.2018.11.025

Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751

Garrido-Miranda, K. A., Rivas, B. L., Pérez -Rivera, M. A., Sanfuentes, E. A., & Peña-Farfal, C. (2018). Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly(3-hydroxybutyrate)-thermoplastic starch. LWT, 98, 260-267. doi:10.1016/j.lwt.2018.08.046

Yadav, B. K., Gidwani, B., & Vyas, A. (2015). Rosin: Recent advances and potential applications in novel drug delivery system. Journal of Bioactive and Compatible Polymers, 31(2), 111-126. doi:10.1177/0883911515601867

Rodríguez-García, A., Martín, J. A., López, R., Sanz, A., & Gil, L. (2016). Effect of four tapping methods on anatomical traits and resin yield in Maritime pine (Pinus pinaster Ait.). Industrial Crops and Products, 86, 143-154. doi:10.1016/j.indcrop.2016.03.033

Llevot, A., Grau, E., Carlotti, S., Grelier, S., & Cramail, H. (2015). Dimerization of abietic acid for the design of renewable polymers by ADMET. European Polymer Journal, 67, 409-417. doi:10.1016/j.eurpolymj.2014.10.021

Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009

Yao, K., & Tang, C. (2013). Controlled Polymerization of Next-Generation Renewable Monomers and Beyond. Macromolecules, 46(5), 1689-1712. doi:10.1021/ma3019574

Gandini, A., & Lacerda, T. M. (2015). From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science, 48, 1-39. doi:10.1016/j.progpolymsci.2014.11.002

Kumooka, Y. (2008). Analysis of rosin and modified rosin esters in adhesives by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Forensic Science International, 176(2-3), 111-120. doi:10.1016/j.forsciint.2007.07.009

Aldas, M., Rayón, E., López-Martínez, J., & Arrieta, M. P. (2020). A Deeper Microscopic Study of the Interaction between Gum Rosin Derivatives and a Mater-Bi Type Bioplastic. Polymers, 12(1), 226. doi:10.3390/polym12010226

Bucci, D. Z., Tavares, L. B. B., & Sell, I. (2005). PHB packaging for the storage of food products. Polymer Testing, 24(5), 564-571. doi:10.1016/j.polymertesting.2005.02.008

Barbosa, S. E., & Kenny, J. M. (1999). Processing of short fiber reinforced polypropylene. II: Statistical study of the effects of processing conditions on the impact strength. Polymer Engineering & Science, 39(10), 1880-1890. doi:10.1002/pen.11581

Olivato, J. B., Grossmann, M. V. E., Bilck, A. P., & Yamashita, F. (2012). Effect of organic acids as additives on the performance of thermoplastic starch/polyester blown films. Carbohydrate Polymers, 90(1), 159-164. doi:10.1016/j.carbpol.2012.05.009

Narayanan, M., Loganathan, S., Valapa, R. B., Thomas, S., & Varghese, T. O. (2017). UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules, 99, 37-45. doi:10.1016/j.ijbiomac.2017.01.152

Pavon, C., Aldas, M., López-Martínez, J., & Ferrándiz, S. (2020). New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives. Polymers, 12(2), 334. doi:10.3390/polym12020334

Bergström, J. (2015). Experimental Characterization Techniques. Mechanics of Solid Polymers, 19-114. doi:10.1016/b978-0-323-31150-2.00002-9

Wattanakornsiri, A., Pachana, K., Kaewpirom, S., Traina, M., & Migliaresi, C. (2012). Preparation and Properties of Green Composites Based on Tapioca Starch and Differently Recycled Paper Cellulose Fibers. Journal of Polymers and the Environment, 20(3), 801-809. doi:10.1007/s10924-012-0494-6

Forssell, P. M., Mikkilä, J. M., Moates, G. K., & Parker, R. (1997). Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch. Carbohydrate Polymers, 34(4), 275-282. doi:10.1016/s0144-8617(97)00133-1

Karlberg, A.-T. (2012). Colophony: Rosin in Unmodified and Modified Form. Kanerva’s Occupational Dermatology, 467-479. doi:10.1007/978-3-642-02035-3_41

Liu, C., Yu, J., Sun, X., Zhang, J., & He, J. (2003). Thermal degradation studies of cyclic olefin copolymers. Polymer Degradation and Stability, 81(2), 197-205. doi:10.1016/s0141-3910(03)00089-2

Teixeira, E. de M., Pasquini, D., Curvelo, A. A. S., Corradini, E., Belgacem, M. N., & Dufresne, A. (2009). Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydrate Polymers, 78(3), 422-431. doi:10.1016/j.carbpol.2009.04.034

Sessini, V., Arrieta, M. P., Kenny, J. M., & Peponi, L. (2016). Processing of edible films based on nanoreinforced gelatinized starch. Polymer Degradation and Stability, 132, 157-168. doi:10.1016/j.polymdegradstab.2016.02.026

Cerruti, P., Santagata, G., Gomez d’Ayala, G., Ambrogi, V., Carfagna, C., Malinconico, M., & Persico, P. (2011). Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer. Polymer Degradation and Stability, 96(5), 839-846. doi:10.1016/j.polymdegradstab.2011.02.003

Mendes, J. F., Paschoalin, R. ., Carmona, V. B., Sena Neto, A. R., Marques, A. C. P., Marconcini, J. M., … Oliveira, J. E. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452-458. doi:10.1016/j.carbpol.2015.10.093

Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), 3912-3918. doi:10.1021/jf011652p

Dang, K. M., & Yoksan, R. (2015). Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydrate Polymers, 115, 575-581. doi:10.1016/j.carbpol.2014.09.005

El-Ghazawy, R. A., El-Saeed, A. M., Al-Shafey, H. I., Abdul-Raheim, A.-R. M., & El-Sockary, M. A. (2015). Rosin based epoxy coating: Synthesis, identification and characterization. European Polymer Journal, 69, 403-415. doi:10.1016/j.eurpolymj.2015.06.025

Campos, A., Teodoro, K. B. R., Teixeira, E. M., Corrêa, A. C., Marconcini, J. M., Wood, D. F., … Mattoso, L. H. C. (2012). Properties of thermoplastic starch and TPS/polycaprolactone blend reinforced with sisal whiskers using extrusion processing. Polymer Engineering & Science, 53(4), 800-808. doi:10.1002/pen.23324

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem