Anders, S., Pyl, P. T., & Huber, W. (2014). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166-169. doi:10.1093/bioinformatics/btu638
Barnes, A. M., Walser, R. H., & Davis, T. D. (1989). Anatomy ofZea mays andGlycine max seedlings treated with triazole plant growth regulators. Biologia Plantarum, 31(5), 370-375. doi:10.1007/bf02876355
Bartrons, M., & Peñuelas, J. (2017). Pharmaceuticals and Personal-Care Products in Plants. Trends in Plant Science, 22(3), 194-203. doi:10.1016/j.tplants.2016.12.010
[+]
Anders, S., Pyl, P. T., & Huber, W. (2014). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166-169. doi:10.1093/bioinformatics/btu638
Barnes, A. M., Walser, R. H., & Davis, T. D. (1989). Anatomy ofZea mays andGlycine max seedlings treated with triazole plant growth regulators. Biologia Plantarum, 31(5), 370-375. doi:10.1007/bf02876355
Bartrons, M., & Peñuelas, J. (2017). Pharmaceuticals and Personal-Care Products in Plants. Trends in Plant Science, 22(3), 194-203. doi:10.1016/j.tplants.2016.12.010
Beemster, G. T. S., Fiorani, F., & Inzé, D. (2003). Cell cycle: the key to plant growth control? Trends in Plant Science, 8(4), 154-158. doi:10.1016/s1360-1385(03)00046-3
Birnbaum, K. (2003). A Gene Expression Map of the Arabidopsis Root. Science, 302(5652), 1956-1960. doi:10.1126/science.1090022
Buxdorf, K., Yaffe, H., Barda, O., & Levy, M. (2013). The Effects of Glucosinolates and Their Breakdown Products on Necrotrophic Fungi. PLoS ONE, 8(8), e70771. doi:10.1371/journal.pone.0070771
Campos, J., Ferech, M., Lázaro, E., de Abajo, F., Oteo, J., Stephens, P., & Goossens, H. (2007). Surveillance of outpatient antibiotic consumption in Spain according to sales data and reimbursement data. Journal of Antimicrobial Chemotherapy, 60(3), 698-701. doi:10.1093/jac/dkm248
Carol, R. J. (2006). The role of reactive oxygen species in cell growth: lessons from root hairs. Journal of Experimental Botany, 57(8), 1829-1834. doi:10.1093/jxb/erj201
Clark-Walker, G. D., & Linnane, A. W. (1966). Invivo differentiation of yeast cytoplasmic and mitochondrial protein synthesis with antibiotics. Biochemical and Biophysical Research Communications, 25(1), 8-13. doi:10.1016/0006-291x(66)90631-0
Clay, N. K., Adio, A. M., Denoux, C., Jander, G., & Ausubel, F. M. (2009). Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response. Science, 323(5910), 95-101. doi:10.1126/science.1164627
Cocito, C., Tiboni, O., Vanlinden, F., & Ciferri, O. (1979). Inhibition of Protein Synthesis in Chloroplasts from Plant Cells by Virginiamycin. Zeitschrift für Naturforschung C, 34(12), 1195-1198. doi:10.1515/znc-1979-1218
Colon-Carmona, A., You, R., Haimovitch-Gal, T., & Doerner, P. (1999). Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. The Plant Journal, 20(4), 503-508. doi:10.1046/j.1365-313x.1999.00620.x
Conte, S., Stevenson, D., Furner, I., & Lloyd, A. (2009). Multiple Antibiotic Resistance in Arabidopsis Is Conferred by Mutations in a Chloroplast-Localized Transport Protein. Plant Physiology, 151(2), 559-573. doi:10.1104/pp.109.143487
Davies, J. (2006). Are antibiotics naturally antibiotics? Journal of Industrial Microbiology & Biotechnology, 33(7), 496-499. doi:10.1007/s10295-006-0112-5
Dejonghe, W., & Russinova, E. (2014). Target identification strategies in plant chemical biology. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00352
De Smet, I., Tetsumura, T., De Rybel, B., Frey, N. F. d., Laplaze, L., Casimiro, I., … Beeckman, T. (2007). Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development, 134(4), 681-690. doi:10.1242/dev.02753
Du, Y., & Scheres, B. (2017). Lateral root formation and the multiple roles of auxin. Journal of Experimental Botany, 69(2), 155-167. doi:10.1093/jxb/erx223
Enders, T. A., & Strader, L. C. (2015). Auxin activity: Past, present, and future. American Journal of Botany, 102(2), 180-196. doi:10.3732/ajb.1400285
Farnese, F. S., Menezes-Silva, P. E., Gusman, G. S., & Oliveira, J. A. (2016). When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00471
Farrar, K., Bryant, D., & Cope‐Selby, N. (2014). Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnology Journal, 12(9), 1193-1206. doi:10.1111/pbi.12279
Foreman, J., Demidchik, V., Bothwell, J. H. F., Mylona, P., Miedema, H., Torres, M. A., … Dolan, L. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422(6930), 442-446. doi:10.1038/nature01485
Guo, F.-Q. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.1086770
Hacquard, S., Kracher, B., Hiruma, K., Münch, P. C., Garrido-Oter, R., Thon, M. R., … O’Connell, R. J. (2016). Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nature Communications, 7(1). doi:10.1038/ncomms11362
Halkier, B. A., & Gershenzon, J. (2006). BIOLOGY AND BIOCHEMISTRY OF GLUCOSINOLATES. Annual Review of Plant Biology, 57(1), 303-333. doi:10.1146/annurev.arplant.57.032905.105228
Hillis, D. G., Fletcher, J., Solomon, K. R., & Sibley, P. K. (2010). Effects of Ten Antibiotics on Seed Germination and Root Elongation in Three Plant Species. Archives of Environmental Contamination and Toxicology, 60(2), 220-232. doi:10.1007/s00244-010-9624-0
Hiruma, K., Gerlach, N., Sacristán, S., Nakano, R. T., Hacquard, S., Kracher, B., … Schulze-Lefert, P. (2016). Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell, 165(2), 464-474. doi:10.1016/j.cell.2016.02.028
Hiruma, K., Onozawa-Komori, M., Takahashi, F., Asakura, M., Bednarek, P., Okuno, T., … Takano, Y. (2010). Entry Mode–Dependent Function of an Indole Glucosinolate Pathway in Arabidopsis for Nonhost Resistance against Anthracnose Pathogens. The Plant Cell, 22(7), 2429-2443. doi:10.1105/tpc.110.074344
Högberg, L. D., Muller, A., Zorzet, A., Monnet, D. L., & Cars, O. (2014). Antibiotic use worldwide. The Lancet Infectious Diseases, 14(12), 1179-1180. doi:10.1016/s1473-3099(14)70987-9
Hossain, M. M., Sultana, F., Kubota, M., Koyama, H., & Hyakumachi, M. (2007). The Plant Growth-Promoting Fungus Penicillium simplicissimum GP17-2 Induces Resistance in Arabidopsis thaliana by Activation of Multiple Defense Signals. Plant and Cell Physiology, 48(12), 1724-1736. doi:10.1093/pcp/pcm144
Jechalke, S., Heuer, H., Siemens, J., Amelung, W., & Smalla, K. (2014). Fate and effects of veterinary antibiotics in soil. Trends in Microbiology, 22(9), 536-545. doi:10.1016/j.tim.2014.05.005
Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.x
Jung, J. K. H., & McCouch, S. (2013). Getting to the roots of it: Genetic and hormonal control of root architecture. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00186
Kan, J., Fang, R., & Jia, Y. (2017). Interkingdom signaling in plant-microbe interactions. Science China Life Sciences, 60(8), 785-796. doi:10.1007/s11427-017-9092-3
Kasai, K. (2004). Guanosine tetra- and pentaphosphate synthase activity in chloroplasts of a higher plant: association with 70S ribosomes and inhibition by tetracycline. Nucleic Acids Research, 32(19), 5732-5741. doi:10.1093/nar/gkh916
Katayama, N., Takano, H., Sugiyama, M., Takio, S., Sakai, A., Tanaka, K., … Ono, K. (2003). Effects of Antibiotics that Inhibit the Bacterial Peptidoglycan Synthesis Pathway on Moss Chloroplast Division. Plant and Cell Physiology, 44(7), 776-781. doi:10.1093/pcp/pcg096
Knapp, C. W., Dolfing, J., Ehlert, P. A. I., & Graham, D. W. (2010). Evidence of Increasing Antibiotic Resistance Gene Abundances in Archived Soils since 1940. Environmental Science & Technology, 44(2), 580-587. doi:10.1021/es901221x
Lareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90(6), 575-587. doi:10.1007/s11103-015-0417-8
Linares, J. F., Gustafsson, I., Baquero, F., & Martinez, J. L. (2006). Antibiotics as intermicrobial signaling agents instead of weapons. Proceedings of the National Academy of Sciences, 103(51), 19484-19489. doi:10.1073/pnas.0608949103
Ljung, K., Hull, A. K., Celenza, J., Yamada, M., Estelle, M., Normanly, J., & Sandberg, G. (2005). Sites and Regulation of Auxin Biosynthesis in Arabidopsis Roots. The Plant Cell, 17(4), 1090-1104. doi:10.1105/tpc.104.029272
Lopez-Moya, F., Escudero, N., Zavala-Gonzalez, E. A., Esteve-Bruna, D., Blázquez, M. A., Alabadí, D., & Lopez-Llorca, L. V. (2017). Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Scientific Reports, 7(1). doi:10.1038/s41598-017-16874-5
Lozano-Juste, J., & León, J. (2009). Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis. Plant Physiology, 152(2), 891-903. doi:10.1104/pp.109.148023
Manzano, C., Pallero-Baena, M., Casimiro, I., De Rybel, B., Orman-Ligeza, B., Van Isterdael, G., … del Pozo, J. C. (2014). The Emerging Role of Reactive Oxygen Species Signaling during Lateral Root Development. Plant Physiology, 165(3), 1105-1119. doi:10.1104/pp.114.238873
Manzano, C., Ramirez-Parra, E., Casimiro, I., Otero, S., Desvoyes, B., De Rybel, B., … C. del Pozo, J. (2012). Auxin and Epigenetic Regulation of SKP2B, an F-Box That Represses Lateral Root Formation. Plant Physiology, 160(2), 749-762. doi:10.1104/pp.112.198341
Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157(11), 2893-2902. doi:10.1016/j.envpol.2009.05.051
Miao, Y., Lv, D., Wang, P., Wang, X.-C., Chen, J., Miao, C., & Song, C.-P. (2006). An Arabidopsis Glutathione Peroxidase Functions as Both a Redox Transducer and a Scavenger in Abscisic Acid and Drought Stress Responses. The Plant Cell, 18(10), 2749-2766. doi:10.1105/tpc.106.044230
Minden, V., Deloy, A., Volkert, A. M., Leonhardt, S. D., & Pufal, G. (2017). Antibiotics impact plant traits, even at small concentrations. AoB PLANTS, 9(2). doi:10.1093/aobpla/plx010
Moullan, N., Mouchiroud, L., Wang, X., Ryu, D., Williams, E. G., Mottis, A., … Auwerx, J. (2015). Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell Reports, 10(10), 1681-1691. doi:10.1016/j.celrep.2015.02.034
Müller, T. M., Böttcher, C., Morbitzer, R., Götz, C. C., Lehmann, J., Lahaye, T., & Glawischnig, E. (2015). TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASE-Mediated Generation and Metabolic Analysis of Camalexin-Deficient cyp71a12 cyp71a13 Double Knockout Lines. Plant Physiology, 168(3), 849-858. doi:10.1104/pp.15.00481
Niu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X., & Zhang, Y. S. (2012). Responses of root architecture development to low phosphorus availability: a review. Annals of Botany, 112(2), 391-408. doi:10.1093/aob/mcs285
Pavlidis, P., & Noble, W. S. (2003). Matrix2png: a utility for visualizing matrix data. Bioinformatics, 19(2), 295-296. doi:10.1093/bioinformatics/19.2.295
Pnueli, L., Liang, H., Rozenberg, M., & Mittler, R. (2003). Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. The Plant Journal, 34(2), 187-203. doi:10.1046/j.1365-313x.2003.01715.x
Qian, H., Lu, H., Ding, H., Lavoie, M., Li, Y., Liu, W., & Fu, Z. (2015). Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity. Scientific Reports, 5(1). doi:10.1038/srep11975
Reyt, G., Boudouf, S., Boucherez, J., Gaymard, F., & Briat, J.-F. (2015). Iron- and Ferritin-Dependent Reactive Oxygen Species Distribution: Impact on Arabidopsis Root System Architecture. Molecular Plant, 8(3), 439-453. doi:10.1016/j.molp.2014.11.014
Rizhsky, L., Davletova, S., Liang, H., & Mittler, R. (2004). The Zinc Finger Protein Zat12 Is Required for Cytosolic Ascorbate Peroxidase 1 Expression during Oxidative Stress inArabidopsis. Journal of Biological Chemistry, 279(12), 11736-11743. doi:10.1074/jbc.m313350200
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616
Rogers, E. E. (1996). Mode of Action of theArabidopsis thalianaPhytoalexin Camalexin and Its Role inArabidopsis-PathogenInteractions. Molecular Plant-Microbe Interactions, 9(8), 748. doi:10.1094/mpmi-9-0748
Sanz, L., Fernández-Marcos, M., Modrego, A., Lewis, D. R., Muday, G. K., Pollmann, S., … Lorenzo, O. (2014). Nitric Oxide Plays a Role in Stem Cell Niche Homeostasis through Its Interaction with Auxin. Plant Physiology, 166(4), 1972-1984. doi:10.1104/pp.114.247445
Schiefelbein, J. W., & Somerville, C. (1990). Genetic Control of Root Hair Development in Arabidopsis thaliana. The Plant Cell, 2(3), 235. doi:10.2307/3869138
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019
Sotelo, T., Lema, M., Soengas, P., Cartea, M. E., & Velasco, P. (2014). In VitroActivity of Glucosinolates and Their Degradation Products against Brassica-Pathogenic Bacteria and Fungi. Applied and Environmental Microbiology, 81(1), 432-440. doi:10.1128/aem.03142-14
Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE, 6(7), e21800. doi:10.1371/journal.pone.0021800
Thiele-Bruhn, S. (2003). Pharmaceutical antibiotic compounds in soils – a review. Journal of Plant Nutrition and Soil Science, 166(2), 145-167. doi:10.1002/jpln.200390023
Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., … Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562-578. doi:10.1038/nprot.2012.016
Truernit, E., Bauby, H., Dubreucq, B., Grandjean, O., Runions, J., Barthélémy, J., & Palauqui, J.-C. (2008). High-Resolution Whole-Mount Imaging of Three-Dimensional Tissue Organization and Gene Expression Enables the Study of Phloem Development and Structure in Arabidopsis. The Plant Cell, 20(6), 1494-1503. doi:10.1105/tpc.107.056069
Ubeda-Tomás, S., Federici, F., Casimiro, I., Beemster, G. T. S., Bhalerao, R., Swarup, R., … Bennett, M. J. (2009). Gibberellin Signaling in the Endodermis Controls Arabidopsis Root Meristem Size. Current Biology, 19(14), 1194-1199. doi:10.1016/j.cub.2009.06.023
Udeigwe, T. K., Teboh, J. M., Eze, P. N., Hashem Stietiya, M., Kumar, V., Hendrix, J., … Kandakji, T. (2015). Implications of leading crop production practices on environmental quality and human health. Journal of Environmental Management, 151, 267-279. doi:10.1016/j.jenvman.2014.11.024
Wang, X., Ryu, D., Houtkooper, R. H., & Auwerx, J. (2015). Antibiotic use and abuse: A threat to mitochondria and chloroplasts with impact on research, health, and environment. BioEssays, 37(10), 1045-1053. doi:10.1002/bies.201500071
Zandalinas, S. I., Vives-Peris, V., Gómez-Cadenas, A., & Arbona, V. (2012). A Fast and Precise Method To Identify Indolic Glucosinolates and Camalexin in Plants by Combining Mass Spectrometric and Biological Information. Journal of Agricultural and Food Chemistry, 60(35), 8648-8658. doi:10.1021/jf302482y
Zhao, Y. (2002). Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes & Development, 16(23), 3100-3112. doi:10.1101/gad.1035402
Zhao, Y., Wang, J., Liu, Y., Miao, H., Cai, C., Shao, Z., … Wang, Q. (2015). Classic myrosinase-dependent degradation of indole glucosinolate attenuates fumonisin B1-induced programmed cell death in Arabidopsis. The Plant Journal, 81(6), 920-933. doi:10.1111/tpj.12778
[-]