- -

beta-Lactam Antibiotics Modify Root Architecture and Indole Glucosinolate Metabolism in Arabidopsis thaliana

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


beta-Lactam Antibiotics Modify Root Architecture and Indole Glucosinolate Metabolism in Arabidopsis thaliana

Show full item record

Gudiño, M.; Blanco-Touriñán, N.; Arbona, V.; Gómez-Cadenas, A.; Blazquez Rodriguez, MA.; Navarro-García, F. (2018). beta-Lactam Antibiotics Modify Root Architecture and Indole Glucosinolate Metabolism in Arabidopsis thaliana. Plant and Cell Physiology. 59(10):2086-2098. https://doi.org/10.1093/pcp/pcy128

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144831

Files in this item

Item Metadata

Title: beta-Lactam Antibiotics Modify Root Architecture and Indole Glucosinolate Metabolism in Arabidopsis thaliana
Author: Gudiño, M. Blanco-Touriñán, Noel Arbona, V. Gómez-Cadenas, Aurelio Blazquez Rodriguez, Miguel Angel Navarro-García, F.
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
[EN] The presence of antibiotics in soils could be due to natural production by soil microorganisms or to the effect of anthropogenic activities. However, the impact of these compounds on plant physiology has not been ...[+]
Subjects: Arabidopsis , Auxin , Beta-lactams , Glucosinolates , Root , ROS
Copyrigths: Cerrado
Plant and Cell Physiology. (issn: 0032-0781 )
DOI: 10.1093/pcp/pcy128
Oxford University Press
Publisher version: https://doi.org/10.1093/pcp/pcy128
Project ID:
info:eu-repo/grantAgreement/MARM//022%2FPC08%2F3-04.2/ES/Metodologías para la monitorización de la aplicación de lodos de depuradora. Bioseguridad microbiana y modelos de flujo y transporte de contaminantes solubles/
This work has been financed by the Spanish Ministerio de Medio Ambiente Rural y Marino [MMA 022/PC08/3-04.2] and the Spanish Agencia Estatal de Investigación [BFU2016-80621-P]. M.E.G. is a fellow of the program Convocatoria ...[+]
Type: Artículo


Anders, S., Pyl, P. T., & Huber, W. (2014). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166-169. doi:10.1093/bioinformatics/btu638

Barnes, A. M., Walser, R. H., & Davis, T. D. (1989). Anatomy ofZea mays andGlycine max seedlings treated with triazole plant growth regulators. Biologia Plantarum, 31(5), 370-375. doi:10.1007/bf02876355

Bartrons, M., & Peñuelas, J. (2017). Pharmaceuticals and Personal-Care Products in Plants. Trends in Plant Science, 22(3), 194-203. doi:10.1016/j.tplants.2016.12.010 [+]
Anders, S., Pyl, P. T., & Huber, W. (2014). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166-169. doi:10.1093/bioinformatics/btu638

Barnes, A. M., Walser, R. H., & Davis, T. D. (1989). Anatomy ofZea mays andGlycine max seedlings treated with triazole plant growth regulators. Biologia Plantarum, 31(5), 370-375. doi:10.1007/bf02876355

Bartrons, M., & Peñuelas, J. (2017). Pharmaceuticals and Personal-Care Products in Plants. Trends in Plant Science, 22(3), 194-203. doi:10.1016/j.tplants.2016.12.010

Beemster, G. T. S., Fiorani, F., & Inzé, D. (2003). Cell cycle: the key to plant growth control? Trends in Plant Science, 8(4), 154-158. doi:10.1016/s1360-1385(03)00046-3

Birnbaum, K. (2003). A Gene Expression Map of the Arabidopsis Root. Science, 302(5652), 1956-1960. doi:10.1126/science.1090022

Buxdorf, K., Yaffe, H., Barda, O., & Levy, M. (2013). The Effects of Glucosinolates and Their Breakdown Products on Necrotrophic Fungi. PLoS ONE, 8(8), e70771. doi:10.1371/journal.pone.0070771

Campos, J., Ferech, M., Lázaro, E., de Abajo, F., Oteo, J., Stephens, P., & Goossens, H. (2007). Surveillance of outpatient antibiotic consumption in Spain according to sales data and reimbursement data. Journal of Antimicrobial Chemotherapy, 60(3), 698-701. doi:10.1093/jac/dkm248

Carol, R. J. (2006). The role of reactive oxygen species in cell growth: lessons from root hairs. Journal of Experimental Botany, 57(8), 1829-1834. doi:10.1093/jxb/erj201

Clark-Walker, G. D., & Linnane, A. W. (1966). Invivo differentiation of yeast cytoplasmic and mitochondrial protein synthesis with antibiotics. Biochemical and Biophysical Research Communications, 25(1), 8-13. doi:10.1016/0006-291x(66)90631-0

Clay, N. K., Adio, A. M., Denoux, C., Jander, G., & Ausubel, F. M. (2009). Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response. Science, 323(5910), 95-101. doi:10.1126/science.1164627

Cocito, C., Tiboni, O., Vanlinden, F., & Ciferri, O. (1979). Inhibition of Protein Synthesis in Chloroplasts from Plant Cells by Virginiamycin. Zeitschrift für Naturforschung C, 34(12), 1195-1198. doi:10.1515/znc-1979-1218

Colon-Carmona, A., You, R., Haimovitch-Gal, T., & Doerner, P. (1999). Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. The Plant Journal, 20(4), 503-508. doi:10.1046/j.1365-313x.1999.00620.x

Conte, S., Stevenson, D., Furner, I., & Lloyd, A. (2009). Multiple Antibiotic Resistance in Arabidopsis Is Conferred by Mutations in a Chloroplast-Localized Transport Protein. Plant Physiology, 151(2), 559-573. doi:10.1104/pp.109.143487

Davies, J. (2006). Are antibiotics naturally antibiotics? Journal of Industrial Microbiology & Biotechnology, 33(7), 496-499. doi:10.1007/s10295-006-0112-5

Dejonghe, W., & Russinova, E. (2014). Target identification strategies in plant chemical biology. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00352

De Smet, I., Tetsumura, T., De Rybel, B., Frey, N. F. d., Laplaze, L., Casimiro, I., … Beeckman, T. (2007). Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development, 134(4), 681-690. doi:10.1242/dev.02753

Du, Y., & Scheres, B. (2017). Lateral root formation and the multiple roles of auxin. Journal of Experimental Botany, 69(2), 155-167. doi:10.1093/jxb/erx223

Enders, T. A., & Strader, L. C. (2015). Auxin activity: Past, present, and future. American Journal of Botany, 102(2), 180-196. doi:10.3732/ajb.1400285

Farnese, F. S., Menezes-Silva, P. E., Gusman, G. S., & Oliveira, J. A. (2016). When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00471

Farrar, K., Bryant, D., & Cope‐Selby, N. (2014). Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnology Journal, 12(9), 1193-1206. doi:10.1111/pbi.12279

Foreman, J., Demidchik, V., Bothwell, J. H. F., Mylona, P., Miedema, H., Torres, M. A., … Dolan, L. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422(6930), 442-446. doi:10.1038/nature01485

Guo, F.-Q. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.1086770

Hacquard, S., Kracher, B., Hiruma, K., Münch, P. C., Garrido-Oter, R., Thon, M. R., … O’Connell, R. J. (2016). Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nature Communications, 7(1). doi:10.1038/ncomms11362

Halkier, B. A., & Gershenzon, J. (2006). BIOLOGY AND BIOCHEMISTRY OF GLUCOSINOLATES. Annual Review of Plant Biology, 57(1), 303-333. doi:10.1146/annurev.arplant.57.032905.105228

Hillis, D. G., Fletcher, J., Solomon, K. R., & Sibley, P. K. (2010). Effects of Ten Antibiotics on Seed Germination and Root Elongation in Three Plant Species. Archives of Environmental Contamination and Toxicology, 60(2), 220-232. doi:10.1007/s00244-010-9624-0

Hiruma, K., Gerlach, N., Sacristán, S., Nakano, R. T., Hacquard, S., Kracher, B., … Schulze-Lefert, P. (2016). Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell, 165(2), 464-474. doi:10.1016/j.cell.2016.02.028

Hiruma, K., Onozawa-Komori, M., Takahashi, F., Asakura, M., Bednarek, P., Okuno, T., … Takano, Y. (2010). Entry Mode–Dependent Function of an Indole Glucosinolate Pathway in Arabidopsis for Nonhost Resistance against Anthracnose Pathogens. The Plant Cell, 22(7), 2429-2443. doi:10.1105/tpc.110.074344

Högberg, L. D., Muller, A., Zorzet, A., Monnet, D. L., & Cars, O. (2014). Antibiotic use worldwide. The Lancet Infectious Diseases, 14(12), 1179-1180. doi:10.1016/s1473-3099(14)70987-9

Hossain, M. M., Sultana, F., Kubota, M., Koyama, H., & Hyakumachi, M. (2007). The Plant Growth-Promoting Fungus Penicillium simplicissimum GP17-2 Induces Resistance in Arabidopsis thaliana by Activation of Multiple Defense Signals. Plant and Cell Physiology, 48(12), 1724-1736. doi:10.1093/pcp/pcm144

Jechalke, S., Heuer, H., Siemens, J., Amelung, W., & Smalla, K. (2014). Fate and effects of veterinary antibiotics in soil. Trends in Microbiology, 22(9), 536-545. doi:10.1016/j.tim.2014.05.005

Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.x

Jung, J. K. H., & McCouch, S. (2013). Getting to the roots of it: Genetic and hormonal control of root architecture. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00186

Kan, J., Fang, R., & Jia, Y. (2017). Interkingdom signaling in plant-microbe interactions. Science China Life Sciences, 60(8), 785-796. doi:10.1007/s11427-017-9092-3

Kasai, K. (2004). Guanosine tetra- and pentaphosphate synthase activity in chloroplasts of a higher plant: association with 70S ribosomes and inhibition by tetracycline. Nucleic Acids Research, 32(19), 5732-5741. doi:10.1093/nar/gkh916

Katayama, N., Takano, H., Sugiyama, M., Takio, S., Sakai, A., Tanaka, K., … Ono, K. (2003). Effects of Antibiotics that Inhibit the Bacterial Peptidoglycan Synthesis Pathway on Moss Chloroplast Division. Plant and Cell Physiology, 44(7), 776-781. doi:10.1093/pcp/pcg096

Knapp, C. W., Dolfing, J., Ehlert, P. A. I., & Graham, D. W. (2010). Evidence of Increasing Antibiotic Resistance Gene Abundances in Archived Soils since 1940. Environmental Science & Technology, 44(2), 580-587. doi:10.1021/es901221x

Lareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90(6), 575-587. doi:10.1007/s11103-015-0417-8

Linares, J. F., Gustafsson, I., Baquero, F., & Martinez, J. L. (2006). Antibiotics as intermicrobial signaling agents instead of weapons. Proceedings of the National Academy of Sciences, 103(51), 19484-19489. doi:10.1073/pnas.0608949103

Ljung, K., Hull, A. K., Celenza, J., Yamada, M., Estelle, M., Normanly, J., & Sandberg, G. (2005). Sites and Regulation of Auxin Biosynthesis in Arabidopsis Roots. The Plant Cell, 17(4), 1090-1104. doi:10.1105/tpc.104.029272

Lopez-Moya, F., Escudero, N., Zavala-Gonzalez, E. A., Esteve-Bruna, D., Blázquez, M. A., Alabadí, D., & Lopez-Llorca, L. V. (2017). Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Scientific Reports, 7(1). doi:10.1038/s41598-017-16874-5

Lozano-Juste, J., & León, J. (2009). Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis. Plant Physiology, 152(2), 891-903. doi:10.1104/pp.109.148023

Manzano, C., Pallero-Baena, M., Casimiro, I., De Rybel, B., Orman-Ligeza, B., Van Isterdael, G., … del Pozo, J. C. (2014). The Emerging Role of Reactive Oxygen Species Signaling during Lateral Root Development. Plant Physiology, 165(3), 1105-1119. doi:10.1104/pp.114.238873

Manzano, C., Ramirez-Parra, E., Casimiro, I., Otero, S., Desvoyes, B., De Rybel, B., … C. del Pozo, J. (2012). Auxin and Epigenetic Regulation of SKP2B, an F-Box That Represses Lateral Root Formation. Plant Physiology, 160(2), 749-762. doi:10.1104/pp.112.198341

Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157(11), 2893-2902. doi:10.1016/j.envpol.2009.05.051

Miao, Y., Lv, D., Wang, P., Wang, X.-C., Chen, J., Miao, C., & Song, C.-P. (2006). An Arabidopsis Glutathione Peroxidase Functions as Both a Redox Transducer and a Scavenger in Abscisic Acid and Drought Stress Responses. The Plant Cell, 18(10), 2749-2766. doi:10.1105/tpc.106.044230

Minden, V., Deloy, A., Volkert, A. M., Leonhardt, S. D., & Pufal, G. (2017). Antibiotics impact plant traits, even at small concentrations. AoB PLANTS, 9(2). doi:10.1093/aobpla/plx010

Moullan, N., Mouchiroud, L., Wang, X., Ryu, D., Williams, E. G., Mottis, A., … Auwerx, J. (2015). Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell Reports, 10(10), 1681-1691. doi:10.1016/j.celrep.2015.02.034

Müller, T. M., Böttcher, C., Morbitzer, R., Götz, C. C., Lehmann, J., Lahaye, T., & Glawischnig, E. (2015). TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASE-Mediated Generation and Metabolic Analysis of Camalexin-Deficient cyp71a12 cyp71a13 Double Knockout Lines. Plant Physiology, 168(3), 849-858. doi:10.1104/pp.15.00481

Niu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X., & Zhang, Y. S. (2012). Responses of root architecture development to low phosphorus availability: a review. Annals of Botany, 112(2), 391-408. doi:10.1093/aob/mcs285

Pavlidis, P., & Noble, W. S. (2003). Matrix2png: a utility for visualizing matrix data. Bioinformatics, 19(2), 295-296. doi:10.1093/bioinformatics/19.2.295

Pnueli, L., Liang, H., Rozenberg, M., & Mittler, R. (2003). Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. The Plant Journal, 34(2), 187-203. doi:10.1046/j.1365-313x.2003.01715.x

Qian, H., Lu, H., Ding, H., Lavoie, M., Li, Y., Liu, W., & Fu, Z. (2015). Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity. Scientific Reports, 5(1). doi:10.1038/srep11975

Reyt, G., Boudouf, S., Boucherez, J., Gaymard, F., & Briat, J.-F. (2015). Iron- and Ferritin-Dependent Reactive Oxygen Species Distribution: Impact on Arabidopsis Root System Architecture. Molecular Plant, 8(3), 439-453. doi:10.1016/j.molp.2014.11.014

Rizhsky, L., Davletova, S., Liang, H., & Mittler, R. (2004). The Zinc Finger Protein Zat12 Is Required for Cytosolic Ascorbate Peroxidase 1 Expression during Oxidative Stress inArabidopsis. Journal of Biological Chemistry, 279(12), 11736-11743. doi:10.1074/jbc.m313350200

Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616

Rogers, E. E. (1996). Mode of Action of theArabidopsis thalianaPhytoalexin Camalexin and Its Role inArabidopsis-PathogenInteractions. Molecular Plant-Microbe Interactions, 9(8), 748. doi:10.1094/mpmi-9-0748

Sanz, L., Fernández-Marcos, M., Modrego, A., Lewis, D. R., Muday, G. K., Pollmann, S., … Lorenzo, O. (2014). Nitric Oxide Plays a Role in Stem Cell Niche Homeostasis through Its Interaction with Auxin. Plant Physiology, 166(4), 1972-1984. doi:10.1104/pp.114.247445

Schiefelbein, J. W., & Somerville, C. (1990). Genetic Control of Root Hair Development in Arabidopsis thaliana. The Plant Cell, 2(3), 235. doi:10.2307/3869138

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019

Sotelo, T., Lema, M., Soengas, P., Cartea, M. E., & Velasco, P. (2014). In VitroActivity of Glucosinolates and Their Degradation Products against Brassica-Pathogenic Bacteria and Fungi. Applied and Environmental Microbiology, 81(1), 432-440. doi:10.1128/aem.03142-14

Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE, 6(7), e21800. doi:10.1371/journal.pone.0021800

Thiele-Bruhn, S. (2003). Pharmaceutical antibiotic compounds in soils – a review. Journal of Plant Nutrition and Soil Science, 166(2), 145-167. doi:10.1002/jpln.200390023

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., … Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562-578. doi:10.1038/nprot.2012.016

Truernit, E., Bauby, H., Dubreucq, B., Grandjean, O., Runions, J., Barthélémy, J., & Palauqui, J.-C. (2008). High-Resolution Whole-Mount Imaging of Three-Dimensional Tissue Organization and Gene Expression Enables the Study of Phloem Development and Structure in Arabidopsis. The Plant Cell, 20(6), 1494-1503. doi:10.1105/tpc.107.056069

Ubeda-Tomás, S., Federici, F., Casimiro, I., Beemster, G. T. S., Bhalerao, R., Swarup, R., … Bennett, M. J. (2009). Gibberellin Signaling in the Endodermis Controls Arabidopsis Root Meristem Size. Current Biology, 19(14), 1194-1199. doi:10.1016/j.cub.2009.06.023

Udeigwe, T. K., Teboh, J. M., Eze, P. N., Hashem Stietiya, M., Kumar, V., Hendrix, J., … Kandakji, T. (2015). Implications of leading crop production practices on environmental quality and human health. Journal of Environmental Management, 151, 267-279. doi:10.1016/j.jenvman.2014.11.024

Wang, X., Ryu, D., Houtkooper, R. H., & Auwerx, J. (2015). Antibiotic use and abuse: A threat to mitochondria and chloroplasts with impact on research, health, and environment. BioEssays, 37(10), 1045-1053. doi:10.1002/bies.201500071

Zandalinas, S. I., Vives-Peris, V., Gómez-Cadenas, A., & Arbona, V. (2012). A Fast and Precise Method To Identify Indolic Glucosinolates and Camalexin in Plants by Combining Mass Spectrometric and Biological Information. Journal of Agricultural and Food Chemistry, 60(35), 8648-8658. doi:10.1021/jf302482y

Zhao, Y. (2002). Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes & Development, 16(23), 3100-3112. doi:10.1101/gad.1035402

Zhao, Y., Wang, J., Liu, Y., Miao, H., Cai, C., Shao, Z., … Wang, Q. (2015). Classic myrosinase-dependent degradation of indole glucosinolate attenuates fumonisin B1-induced programmed cell death in Arabidopsis. The Plant Journal, 81(6), 920-933. doi:10.1111/tpj.12778




This item appears in the following Collection(s)

Show full item record