Mostrar el registro sencillo del ítem
dc.contributor.author | Gudiño, M. | es_ES |
dc.contributor.author | Blanco-Touriñán, Noel | es_ES |
dc.contributor.author | Arbona, V. | es_ES |
dc.contributor.author | Gómez-Cadenas, Aurelio | es_ES |
dc.contributor.author | Blazquez Rodriguez, Miguel Angel | es_ES |
dc.contributor.author | Navarro-García, F. | es_ES |
dc.date.accessioned | 2020-06-02T05:37:44Z | |
dc.date.available | 2020-06-02T05:37:44Z | |
dc.date.issued | 2018-10 | es_ES |
dc.identifier.issn | 0032-0781 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144831 | |
dc.description.abstract | [EN] The presence of antibiotics in soils could be due to natural production by soil microorganisms or to the effect of anthropogenic activities. However, the impact of these compounds on plant physiology has not been thoroughly investigated. To evaluate the effect of beta-lactam antibiotics (carbenicillin and penicillin) on the growth and development of Arabidopsis thaliana roots, plants were grown in the presence of different amounts and we found a reduction in root size, an increase in the size of root hairs as well as an abnormal position closer to the tip of the roots. Those phenomena were dependent on the accumulation of both antibiotics inside root tissues and also correlated with a decrease in size of the root apical meristem not related to an alteration in cell division but to a decrease in cell expansion. Using an RNA sequencing analysis, we detected an increase in the expression of genes related to the response to oxidative stress, which would explain the increase in the levels of endogenous reactive oxygen species found in the presence of those antibiotics. Moreover, some auxin-responsive genes were misregulated, especially an induction of CYP79B3, possibly explaining the increase in auxin levels in the presence of carbenicillin and the decrease in the amount of indole glucosinolates, involved in the control of fungal infections. Accordingly, penicillin-treated plants were hypersensitive to the endophyte fungus Colletotrichum tofieldiae. These results underscore the risks for plant growth of beta-lactam antibiotics in agricultural soils, and suggest a possible function for these compounds as fungus-produced signaling molecules to modify plant behavior. | es_ES |
dc.description.sponsorship | This work has been financed by the Spanish Ministerio de Medio Ambiente Rural y Marino [MMA 022/PC08/3-04.2] and the Spanish Agencia Estatal de Investigación [BFU2016-80621-P]. M.E.G. is a fellow of the program Convocatoria Abierta 2013 - Fase I (Instituto de Fomento de Talento Humano (IFTH), Secretaría Nacional de Educación Superior Ciencia y Tecnología (SENESCYT) (Ecuador). N.B-T is a recipient of a MINECO FPI Fellowship (BES-2014-068868). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | Plant and Cell Physiology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Arabidopsis | es_ES |
dc.subject | Auxin | es_ES |
dc.subject | Beta-lactams | es_ES |
dc.subject | Glucosinolates | es_ES |
dc.subject | Root | es_ES |
dc.subject | ROS | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | beta-Lactam Antibiotics Modify Root Architecture and Indole Glucosinolate Metabolism in Arabidopsis thaliana | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/pcp/pcy128 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2014-068868/ES/BES-2014-068868/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MARM//022%2FPC08%2F3-04.2/ES/Metodologías para la monitorización de la aplicación de lodos de depuradora. Bioseguridad microbiana y modelos de flujo y transporte de contaminantes solubles/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2016-80621-P/ES/ANÁLISIS EVOLUTIVO DE UN 'HUB' FUNCIONAL EN PLANTAS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Gudiño, M.; Blanco-Touriñán, N.; Arbona, V.; Gómez-Cadenas, A.; Blazquez Rodriguez, MA.; Navarro-García, F. (2018). beta-Lactam Antibiotics Modify Root Architecture and Indole Glucosinolate Metabolism in Arabidopsis thaliana. Plant and Cell Physiology. 59(10):2086-2098. https://doi.org/10.1093/pcp/pcy128 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/pcp/pcy128 | es_ES |
dc.description.upvformatpinicio | 2086 | es_ES |
dc.description.upvformatpfin | 2098 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 59 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.pmid | 29986082 | es_ES |
dc.relation.pasarela | S\382350 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Medio Ambiente y Medio Rural y Marino | es_ES |
dc.contributor.funder | Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador | |
dc.description.references | Anders, S., Pyl, P. T., & Huber, W. (2014). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166-169. doi:10.1093/bioinformatics/btu638 | es_ES |
dc.description.references | Barnes, A. M., Walser, R. H., & Davis, T. D. (1989). Anatomy ofZea mays andGlycine max seedlings treated with triazole plant growth regulators. Biologia Plantarum, 31(5), 370-375. doi:10.1007/bf02876355 | es_ES |
dc.description.references | Bartrons, M., & Peñuelas, J. (2017). Pharmaceuticals and Personal-Care Products in Plants. Trends in Plant Science, 22(3), 194-203. doi:10.1016/j.tplants.2016.12.010 | es_ES |
dc.description.references | Beemster, G. T. S., Fiorani, F., & Inzé, D. (2003). Cell cycle: the key to plant growth control? Trends in Plant Science, 8(4), 154-158. doi:10.1016/s1360-1385(03)00046-3 | es_ES |
dc.description.references | Birnbaum, K. (2003). A Gene Expression Map of the Arabidopsis Root. Science, 302(5652), 1956-1960. doi:10.1126/science.1090022 | es_ES |
dc.description.references | Buxdorf, K., Yaffe, H., Barda, O., & Levy, M. (2013). The Effects of Glucosinolates and Their Breakdown Products on Necrotrophic Fungi. PLoS ONE, 8(8), e70771. doi:10.1371/journal.pone.0070771 | es_ES |
dc.description.references | Campos, J., Ferech, M., Lázaro, E., de Abajo, F., Oteo, J., Stephens, P., & Goossens, H. (2007). Surveillance of outpatient antibiotic consumption in Spain according to sales data and reimbursement data. Journal of Antimicrobial Chemotherapy, 60(3), 698-701. doi:10.1093/jac/dkm248 | es_ES |
dc.description.references | Carol, R. J. (2006). The role of reactive oxygen species in cell growth: lessons from root hairs. Journal of Experimental Botany, 57(8), 1829-1834. doi:10.1093/jxb/erj201 | es_ES |
dc.description.references | Clark-Walker, G. D., & Linnane, A. W. (1966). Invivo differentiation of yeast cytoplasmic and mitochondrial protein synthesis with antibiotics. Biochemical and Biophysical Research Communications, 25(1), 8-13. doi:10.1016/0006-291x(66)90631-0 | es_ES |
dc.description.references | Clay, N. K., Adio, A. M., Denoux, C., Jander, G., & Ausubel, F. M. (2009). Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response. Science, 323(5910), 95-101. doi:10.1126/science.1164627 | es_ES |
dc.description.references | Cocito, C., Tiboni, O., Vanlinden, F., & Ciferri, O. (1979). Inhibition of Protein Synthesis in Chloroplasts from Plant Cells by Virginiamycin. Zeitschrift für Naturforschung C, 34(12), 1195-1198. doi:10.1515/znc-1979-1218 | es_ES |
dc.description.references | Colon-Carmona, A., You, R., Haimovitch-Gal, T., & Doerner, P. (1999). Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. The Plant Journal, 20(4), 503-508. doi:10.1046/j.1365-313x.1999.00620.x | es_ES |
dc.description.references | Conte, S., Stevenson, D., Furner, I., & Lloyd, A. (2009). Multiple Antibiotic Resistance in Arabidopsis Is Conferred by Mutations in a Chloroplast-Localized Transport Protein. Plant Physiology, 151(2), 559-573. doi:10.1104/pp.109.143487 | es_ES |
dc.description.references | Davies, J. (2006). Are antibiotics naturally antibiotics? Journal of Industrial Microbiology & Biotechnology, 33(7), 496-499. doi:10.1007/s10295-006-0112-5 | es_ES |
dc.description.references | Dejonghe, W., & Russinova, E. (2014). Target identification strategies in plant chemical biology. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00352 | es_ES |
dc.description.references | De Smet, I., Tetsumura, T., De Rybel, B., Frey, N. F. d., Laplaze, L., Casimiro, I., … Beeckman, T. (2007). Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development, 134(4), 681-690. doi:10.1242/dev.02753 | es_ES |
dc.description.references | Du, Y., & Scheres, B. (2017). Lateral root formation and the multiple roles of auxin. Journal of Experimental Botany, 69(2), 155-167. doi:10.1093/jxb/erx223 | es_ES |
dc.description.references | Enders, T. A., & Strader, L. C. (2015). Auxin activity: Past, present, and future. American Journal of Botany, 102(2), 180-196. doi:10.3732/ajb.1400285 | es_ES |
dc.description.references | Farnese, F. S., Menezes-Silva, P. E., Gusman, G. S., & Oliveira, J. A. (2016). When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00471 | es_ES |
dc.description.references | Farrar, K., Bryant, D., & Cope‐Selby, N. (2014). Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnology Journal, 12(9), 1193-1206. doi:10.1111/pbi.12279 | es_ES |
dc.description.references | Foreman, J., Demidchik, V., Bothwell, J. H. F., Mylona, P., Miedema, H., Torres, M. A., … Dolan, L. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422(6930), 442-446. doi:10.1038/nature01485 | es_ES |
dc.description.references | Guo, F.-Q. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.1086770 | es_ES |
dc.description.references | Hacquard, S., Kracher, B., Hiruma, K., Münch, P. C., Garrido-Oter, R., Thon, M. R., … O’Connell, R. J. (2016). Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nature Communications, 7(1). doi:10.1038/ncomms11362 | es_ES |
dc.description.references | Halkier, B. A., & Gershenzon, J. (2006). BIOLOGY AND BIOCHEMISTRY OF GLUCOSINOLATES. Annual Review of Plant Biology, 57(1), 303-333. doi:10.1146/annurev.arplant.57.032905.105228 | es_ES |
dc.description.references | Hillis, D. G., Fletcher, J., Solomon, K. R., & Sibley, P. K. (2010). Effects of Ten Antibiotics on Seed Germination and Root Elongation in Three Plant Species. Archives of Environmental Contamination and Toxicology, 60(2), 220-232. doi:10.1007/s00244-010-9624-0 | es_ES |
dc.description.references | Hiruma, K., Gerlach, N., Sacristán, S., Nakano, R. T., Hacquard, S., Kracher, B., … Schulze-Lefert, P. (2016). Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell, 165(2), 464-474. doi:10.1016/j.cell.2016.02.028 | es_ES |
dc.description.references | Hiruma, K., Onozawa-Komori, M., Takahashi, F., Asakura, M., Bednarek, P., Okuno, T., … Takano, Y. (2010). Entry Mode–Dependent Function of an Indole Glucosinolate Pathway in Arabidopsis for Nonhost Resistance against Anthracnose Pathogens. The Plant Cell, 22(7), 2429-2443. doi:10.1105/tpc.110.074344 | es_ES |
dc.description.references | Högberg, L. D., Muller, A., Zorzet, A., Monnet, D. L., & Cars, O. (2014). Antibiotic use worldwide. The Lancet Infectious Diseases, 14(12), 1179-1180. doi:10.1016/s1473-3099(14)70987-9 | es_ES |
dc.description.references | Hossain, M. M., Sultana, F., Kubota, M., Koyama, H., & Hyakumachi, M. (2007). The Plant Growth-Promoting Fungus Penicillium simplicissimum GP17-2 Induces Resistance in Arabidopsis thaliana by Activation of Multiple Defense Signals. Plant and Cell Physiology, 48(12), 1724-1736. doi:10.1093/pcp/pcm144 | es_ES |
dc.description.references | Jechalke, S., Heuer, H., Siemens, J., Amelung, W., & Smalla, K. (2014). Fate and effects of veterinary antibiotics in soil. Trends in Microbiology, 22(9), 536-545. doi:10.1016/j.tim.2014.05.005 | es_ES |
dc.description.references | Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.x | es_ES |
dc.description.references | Jung, J. K. H., & McCouch, S. (2013). Getting to the roots of it: Genetic and hormonal control of root architecture. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00186 | es_ES |
dc.description.references | Kan, J., Fang, R., & Jia, Y. (2017). Interkingdom signaling in plant-microbe interactions. Science China Life Sciences, 60(8), 785-796. doi:10.1007/s11427-017-9092-3 | es_ES |
dc.description.references | Kasai, K. (2004). Guanosine tetra- and pentaphosphate synthase activity in chloroplasts of a higher plant: association with 70S ribosomes and inhibition by tetracycline. Nucleic Acids Research, 32(19), 5732-5741. doi:10.1093/nar/gkh916 | es_ES |
dc.description.references | Katayama, N., Takano, H., Sugiyama, M., Takio, S., Sakai, A., Tanaka, K., … Ono, K. (2003). Effects of Antibiotics that Inhibit the Bacterial Peptidoglycan Synthesis Pathway on Moss Chloroplast Division. Plant and Cell Physiology, 44(7), 776-781. doi:10.1093/pcp/pcg096 | es_ES |
dc.description.references | Knapp, C. W., Dolfing, J., Ehlert, P. A. I., & Graham, D. W. (2010). Evidence of Increasing Antibiotic Resistance Gene Abundances in Archived Soils since 1940. Environmental Science & Technology, 44(2), 580-587. doi:10.1021/es901221x | es_ES |
dc.description.references | Lareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90(6), 575-587. doi:10.1007/s11103-015-0417-8 | es_ES |
dc.description.references | Linares, J. F., Gustafsson, I., Baquero, F., & Martinez, J. L. (2006). Antibiotics as intermicrobial signaling agents instead of weapons. Proceedings of the National Academy of Sciences, 103(51), 19484-19489. doi:10.1073/pnas.0608949103 | es_ES |
dc.description.references | Ljung, K., Hull, A. K., Celenza, J., Yamada, M., Estelle, M., Normanly, J., & Sandberg, G. (2005). Sites and Regulation of Auxin Biosynthesis in Arabidopsis Roots. The Plant Cell, 17(4), 1090-1104. doi:10.1105/tpc.104.029272 | es_ES |
dc.description.references | Lopez-Moya, F., Escudero, N., Zavala-Gonzalez, E. A., Esteve-Bruna, D., Blázquez, M. A., Alabadí, D., & Lopez-Llorca, L. V. (2017). Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Scientific Reports, 7(1). doi:10.1038/s41598-017-16874-5 | es_ES |
dc.description.references | Lozano-Juste, J., & León, J. (2009). Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis. Plant Physiology, 152(2), 891-903. doi:10.1104/pp.109.148023 | es_ES |
dc.description.references | Manzano, C., Pallero-Baena, M., Casimiro, I., De Rybel, B., Orman-Ligeza, B., Van Isterdael, G., … del Pozo, J. C. (2014). The Emerging Role of Reactive Oxygen Species Signaling during Lateral Root Development. Plant Physiology, 165(3), 1105-1119. doi:10.1104/pp.114.238873 | es_ES |
dc.description.references | Manzano, C., Ramirez-Parra, E., Casimiro, I., Otero, S., Desvoyes, B., De Rybel, B., … C. del Pozo, J. (2012). Auxin and Epigenetic Regulation of SKP2B, an F-Box That Represses Lateral Root Formation. Plant Physiology, 160(2), 749-762. doi:10.1104/pp.112.198341 | es_ES |
dc.description.references | Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157(11), 2893-2902. doi:10.1016/j.envpol.2009.05.051 | es_ES |
dc.description.references | Miao, Y., Lv, D., Wang, P., Wang, X.-C., Chen, J., Miao, C., & Song, C.-P. (2006). An Arabidopsis Glutathione Peroxidase Functions as Both a Redox Transducer and a Scavenger in Abscisic Acid and Drought Stress Responses. The Plant Cell, 18(10), 2749-2766. doi:10.1105/tpc.106.044230 | es_ES |
dc.description.references | Minden, V., Deloy, A., Volkert, A. M., Leonhardt, S. D., & Pufal, G. (2017). Antibiotics impact plant traits, even at small concentrations. AoB PLANTS, 9(2). doi:10.1093/aobpla/plx010 | es_ES |
dc.description.references | Moullan, N., Mouchiroud, L., Wang, X., Ryu, D., Williams, E. G., Mottis, A., … Auwerx, J. (2015). Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell Reports, 10(10), 1681-1691. doi:10.1016/j.celrep.2015.02.034 | es_ES |
dc.description.references | Müller, T. M., Böttcher, C., Morbitzer, R., Götz, C. C., Lehmann, J., Lahaye, T., & Glawischnig, E. (2015). TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASE-Mediated Generation and Metabolic Analysis of Camalexin-Deficient cyp71a12 cyp71a13 Double Knockout Lines. Plant Physiology, 168(3), 849-858. doi:10.1104/pp.15.00481 | es_ES |
dc.description.references | Niu, Y. F., Chai, R. S., Jin, G. L., Wang, H., Tang, C. X., & Zhang, Y. S. (2012). Responses of root architecture development to low phosphorus availability: a review. Annals of Botany, 112(2), 391-408. doi:10.1093/aob/mcs285 | es_ES |
dc.description.references | Pavlidis, P., & Noble, W. S. (2003). Matrix2png: a utility for visualizing matrix data. Bioinformatics, 19(2), 295-296. doi:10.1093/bioinformatics/19.2.295 | es_ES |
dc.description.references | Pnueli, L., Liang, H., Rozenberg, M., & Mittler, R. (2003). Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. The Plant Journal, 34(2), 187-203. doi:10.1046/j.1365-313x.2003.01715.x | es_ES |
dc.description.references | Qian, H., Lu, H., Ding, H., Lavoie, M., Li, Y., Liu, W., & Fu, Z. (2015). Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity. Scientific Reports, 5(1). doi:10.1038/srep11975 | es_ES |
dc.description.references | Reyt, G., Boudouf, S., Boucherez, J., Gaymard, F., & Briat, J.-F. (2015). Iron- and Ferritin-Dependent Reactive Oxygen Species Distribution: Impact on Arabidopsis Root System Architecture. Molecular Plant, 8(3), 439-453. doi:10.1016/j.molp.2014.11.014 | es_ES |
dc.description.references | Rizhsky, L., Davletova, S., Liang, H., & Mittler, R. (2004). The Zinc Finger Protein Zat12 Is Required for Cytosolic Ascorbate Peroxidase 1 Expression during Oxidative Stress inArabidopsis. Journal of Biological Chemistry, 279(12), 11736-11743. doi:10.1074/jbc.m313350200 | es_ES |
dc.description.references | Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616 | es_ES |
dc.description.references | Rogers, E. E. (1996). Mode of Action of theArabidopsis thalianaPhytoalexin Camalexin and Its Role inArabidopsis-PathogenInteractions. Molecular Plant-Microbe Interactions, 9(8), 748. doi:10.1094/mpmi-9-0748 | es_ES |
dc.description.references | Sanz, L., Fernández-Marcos, M., Modrego, A., Lewis, D. R., Muday, G. K., Pollmann, S., … Lorenzo, O. (2014). Nitric Oxide Plays a Role in Stem Cell Niche Homeostasis through Its Interaction with Auxin. Plant Physiology, 166(4), 1972-1984. doi:10.1104/pp.114.247445 | es_ES |
dc.description.references | Schiefelbein, J. W., & Somerville, C. (1990). Genetic Control of Root Hair Development in Arabidopsis thaliana. The Plant Cell, 2(3), 235. doi:10.2307/3869138 | es_ES |
dc.description.references | Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019 | es_ES |
dc.description.references | Sotelo, T., Lema, M., Soengas, P., Cartea, M. E., & Velasco, P. (2014). In VitroActivity of Glucosinolates and Their Degradation Products against Brassica-Pathogenic Bacteria and Fungi. Applied and Environmental Microbiology, 81(1), 432-440. doi:10.1128/aem.03142-14 | es_ES |
dc.description.references | Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE, 6(7), e21800. doi:10.1371/journal.pone.0021800 | es_ES |
dc.description.references | Thiele-Bruhn, S. (2003). Pharmaceutical antibiotic compounds in soils – a review. Journal of Plant Nutrition and Soil Science, 166(2), 145-167. doi:10.1002/jpln.200390023 | es_ES |
dc.description.references | Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., … Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562-578. doi:10.1038/nprot.2012.016 | es_ES |
dc.description.references | Truernit, E., Bauby, H., Dubreucq, B., Grandjean, O., Runions, J., Barthélémy, J., & Palauqui, J.-C. (2008). High-Resolution Whole-Mount Imaging of Three-Dimensional Tissue Organization and Gene Expression Enables the Study of Phloem Development and Structure in Arabidopsis. The Plant Cell, 20(6), 1494-1503. doi:10.1105/tpc.107.056069 | es_ES |
dc.description.references | Ubeda-Tomás, S., Federici, F., Casimiro, I., Beemster, G. T. S., Bhalerao, R., Swarup, R., … Bennett, M. J. (2009). Gibberellin Signaling in the Endodermis Controls Arabidopsis Root Meristem Size. Current Biology, 19(14), 1194-1199. doi:10.1016/j.cub.2009.06.023 | es_ES |
dc.description.references | Udeigwe, T. K., Teboh, J. M., Eze, P. N., Hashem Stietiya, M., Kumar, V., Hendrix, J., … Kandakji, T. (2015). Implications of leading crop production practices on environmental quality and human health. Journal of Environmental Management, 151, 267-279. doi:10.1016/j.jenvman.2014.11.024 | es_ES |
dc.description.references | Wang, X., Ryu, D., Houtkooper, R. H., & Auwerx, J. (2015). Antibiotic use and abuse: A threat to mitochondria and chloroplasts with impact on research, health, and environment. BioEssays, 37(10), 1045-1053. doi:10.1002/bies.201500071 | es_ES |
dc.description.references | Zandalinas, S. I., Vives-Peris, V., Gómez-Cadenas, A., & Arbona, V. (2012). A Fast and Precise Method To Identify Indolic Glucosinolates and Camalexin in Plants by Combining Mass Spectrometric and Biological Information. Journal of Agricultural and Food Chemistry, 60(35), 8648-8658. doi:10.1021/jf302482y | es_ES |
dc.description.references | Zhao, Y. (2002). Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes & Development, 16(23), 3100-3112. doi:10.1101/gad.1035402 | es_ES |
dc.description.references | Zhao, Y., Wang, J., Liu, Y., Miao, H., Cai, C., Shao, Z., … Wang, Q. (2015). Classic myrosinase-dependent degradation of indole glucosinolate attenuates fumonisin B1-induced programmed cell death in Arabidopsis. The Plant Journal, 81(6), 920-933. doi:10.1111/tpj.12778 | es_ES |