- -

Structural and dielectric properties of Cobaltacarborane Composite Polybenzimidazole Membranes as solid polymer electrolytes at high temperature

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structural and dielectric properties of Cobaltacarborane Composite Polybenzimidazole Membranes as solid polymer electrolytes at high temperature

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fuentes, I. es_ES
dc.contributor.author Andrio Balado, Andreu es_ES
dc.contributor.author Garcia Bernabe, Abel es_ES
dc.contributor.author Escorihuela Fuentes, Jorge es_ES
dc.contributor.author Viñas, Clara es_ES
dc.contributor.author Teixidor, F. es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.date.accessioned 2020-06-03T05:52:45Z
dc.date.available 2020-06-03T05:52:45Z
dc.date.issued 2018-04-21 es_ES
dc.identifier.issn 1463-9076 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145106
dc.description.abstract [EN] The conductivity of a series of composite membranes, based on polybenzimidazole (PBI) containing the metallacarborane salt M[Co(C2B9H11)(2)], M[COSANE] and tetraphenylborate, M[B(C6H5)(4)], M[TPB] both anions having the same number of atoms and the same negative charge, has been investigated. Different cations (M = H+, Li+ and Na+) have been studied and the composite membranes have been characterized by water uptake, swelling ratios, ATR FT-IR, thermogravimetric analysis and electrochemical impedance spectroscopy to explore the dielectric response and ion dynamics in composite membranes. Our results show that conductivity increases with increasing temperature and it is higher for H+ than for Li+ and Na+ for all temperatures under study. The mobility of Li+ is greater in [COSANE](-) than in [TPB](-) composite PBI@membranes while for Na+ it is the opposite. The temperature dependence of the conductivity of the composite was followed by a typical Arrhenius behaviour with two different regions: (1) between 20 and 100 degrees C, and (2) between 100 and 150 degrees C. Using the analysis of electrode polarization (EP) based on the Thrukhan theory we have calculated the ionic diffusion coefficients and the density of carriers. From the double logarithmic plot of the imaginary part of the conductivity (sigma '') versus frequency in the entire range of temperatures studied we have determined for each sample at each temperature, the frequency values of the onset (f(ON)) and full development of electrode polarization (f(MAX)), respectively, which permit us to calculate static permittivity. es_ES
dc.description.sponsorship We gratefully acknowledge Spanish Ministerio de Economia y Competitividad (MINECO) for financial support by the ENE/2015-69203-R project and CTQ2016-75150-R project, and Generalitat de Catalunya (2014/SGR/149). I. Fuentes is enrolled in the PhD program of the UAB. The authors acknowledge Dr Oscar Sahuquillo for technical assistance in TGA. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Structural and dielectric properties of Cobaltacarborane Composite Polybenzimidazole Membranes as solid polymer electrolytes at high temperature es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8cp00372f es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 149/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-75150-R/ES/MATERIALES BASADOS EN CLUSTERES DE BORO PARA ENERGIA SOSTENIBLE Y APLICACIONES MEDIOAMBIENTALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Fuentes, I.; Andrio Balado, A.; Garcia Bernabe, A.; Escorihuela Fuentes, J.; Viñas, C.; Teixidor, F.; Compañ Moreno, V. (2018). Structural and dielectric properties of Cobaltacarborane Composite Polybenzimidazole Membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics. 20(15):10173-10185. https://doi.org/10.1039/c8cp00372f es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8cp00372f es_ES
dc.description.upvformatpinicio 10173 es_ES
dc.description.upvformatpfin 10185 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 15 es_ES
dc.identifier.pmid 29594295 es_ES
dc.relation.pasarela S\372598 es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references I. E. A. Statistics, IEA, Paris, France, 2016 es_ES
dc.description.references Li, W., Dahn, J. R., & Wainwright, D. S. (1994). Rechargeable Lithium Batteries with Aqueous Electrolytes. Science, 264(5162), 1115-1118. doi:10.1126/science.264.5162.1115 es_ES
dc.description.references Lee, H., Yanilmaz, M., Toprakci, O., Fu, K., & Zhang, X. (2014). A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci., 7(12), 3857-3886. doi:10.1039/c4ee01432d es_ES
dc.description.references Anothumakkool, B., Torris A. T., A., Veeliyath, S., Vijayakumar, V., Badiger, M. V., & Kurungot, S. (2016). High-Performance Flexible Solid-State Supercapacitor with an Extended Nanoregime Interface through in Situ Polymer Electrolyte Generation. ACS Applied Materials & Interfaces, 8(2), 1233-1241. doi:10.1021/acsami.5b09677 es_ES
dc.description.references Huang, C., Zhang, J., Snaith, H. J., & Grant, P. S. (2016). Engineering the Membrane/Electrode Interface To Improve the Performance of Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 8(32), 20756-20765. doi:10.1021/acsami.6b05789 es_ES
dc.description.references Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030 es_ES
dc.description.references Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k es_ES
dc.description.references Lufrano, F., Baglio, V., Staiti, P., Antonucci, V., & Arico’, A. S. (2013). Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 243, 519-534. doi:10.1016/j.jpowsour.2013.05.180 es_ES
dc.description.references Awang, N., Ismail, A. F., Jaafar, J., Matsuura, T., Junoh, H., Othman, M. H. D., & Rahman, M. A. (2015). Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: A review. Reactive and Functional Polymers, 86, 248-258. doi:10.1016/j.reactfunctpolym.2014.09.019 es_ES
dc.description.references Nunes, S. (2002). Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells. Journal of Membrane Science, 203(1-2), 215-225. doi:10.1016/s0376-7388(02)00009-1 es_ES
dc.description.references Jung, D. H., Cho, S. Y., Peck, D. H., Shin, D. R., & Kim, J. S. (2003). Preparation and performance of a Nafion®/montmorillonite nanocomposite membrane for direct methanol fuel cell. Journal of Power Sources, 118(1-2), 205-211. doi:10.1016/s0378-7753(03)00095-8 es_ES
dc.description.references Song, M.-K., Park, S.-B., Kim, Y.-T., Kim, K.-H., Min, S.-K., & Rhee, H.-W. (2004). Characterization of polymer-layered silicate nanocomposite membranes for direct methanol fuel cells. Electrochimica Acta, 50(2-3), 639-643. doi:10.1016/j.electacta.2003.12.078 es_ES
dc.description.references GAOWEN, Z., & ZHENTAO, Z. (2005). Organic/inorganic composite membranes for application in DMFC. Journal of Membrane Science, 261(1-2), 107-113. doi:10.1016/j.memsci.2005.03.036 es_ES
dc.description.references Hande, V. R., Rath, S. K., Rao, S., & Patri, M. (2011). Cross-linked sulfonated poly (ether ether ketone) (SPEEK)/reactive organoclay nanocomposite proton exchange membranes (PEM). Journal of Membrane Science, 372(1-2), 40-48. doi:10.1016/j.memsci.2011.01.042 es_ES
dc.description.references Shimizu, G. K. H. (2005). Assembly of metal ions and ligands with adaptable coordinative tendencies as a route to functional metal-organic solids. Journal of Solid State Chemistry, 178(8), 2519-2526. doi:10.1016/j.jssc.2005.07.003 es_ES
dc.description.references Li, Q., He, R., Jensen, J. O., & Bjerrum, N. J. (2003). Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemistry of Materials, 15(26), 4896-4915. doi:10.1021/cm0310519 es_ES
dc.description.references Hurd, J. A., Vaidhyanathan, R., Thangadurai, V., Ratcliffe, C. I., Moudrakovski, I. L., & Shimizu, G. K. H. (2009). Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework. Nature Chemistry, 1(9), 705-710. doi:10.1038/nchem.402 es_ES
dc.description.references Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., … Kær, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024 es_ES
dc.description.references González-Cardoso, P., Stoica, A.-I., Farràs, P., Pepiol, A., Viñas, C., & Teixidor, F. (2010). Additive Tuning of Redox Potential in Metallacarboranes by Sequential Halogen Substitution. Chemistry - A European Journal, 16(22), 6660-6665. doi:10.1002/chem.200902558 es_ES
dc.description.references Pepiol, A., Teixidor, F., Sillanpää, R., Lupu, M., & Viñas, C. (2011). Stepwise Sequential Redox Potential Modulation Possible on a Single Platform. Angewandte Chemie International Edition, 50(52), 12491-12495. doi:10.1002/anie.201105668 es_ES
dc.description.references Tarrés, M., Arderiu, V. S., Zaulet, A., Viñas, C., Fabrizi de Biani, F., & Teixidor, F. (2015). How to get the desired reduction voltage in a single framework! Metallacarborane as an optimal probe for sequential voltage tuning. Dalton Transactions, 44(26), 11690-11695. doi:10.1039/c5dt01464f es_ES
dc.description.references Olid, D., Núñez, R., Viñas, C., & Teixidor, F. (2013). Methods to produce B–C, B–P, B–N and B–S bonds in boron clusters. Chemical Society Reviews, 42(8), 3318. doi:10.1039/c2cs35441a es_ES
dc.description.references Bauduin, P., Prevost, S., Farràs, P., Teixidor, F., Diat, O., & Zemb, T. (2011). A Theta-Shaped Amphiphilic Cobaltabisdicarbollide Anion: Transition From Monolayer Vesicles to Micelles. Angewandte Chemie International Edition, 50(23), 5298-5300. doi:10.1002/anie.201100410 es_ES
dc.description.references Brusselle, D., Bauduin, P., Girard, L., Zaulet, A., Viñas, C., Teixidor, F., … Diat, O. (2013). Lyotropic Lamellar Phase Formed from Monolayered θ-Shaped Carborane-Cage Amphiphiles. Angewandte Chemie International Edition, 52(46), 12114-12118. doi:10.1002/anie.201307357 es_ES
dc.description.references Gassin, P.-M., Girard, L., Martin-Gassin, G., Brusselle, D., Jonchère, A., Diat, O., … Bauduin, P. (2015). Surface Activity and Molecular Organization of Metallacarboranes at the Air–Water Interface Revealed by Nonlinear Optics. Langmuir, 31(8), 2297-2303. doi:10.1021/acs.langmuir.5b00125 es_ES
dc.description.references Ďorďovič, V., Tošner, Z., Uchman, M., Zhigunov, A., Reza, M., Ruokolainen, J., … Matějíček, P. (2016). Stealth Amphiphiles: Self-Assembly of Polyhedral Boron Clusters. Langmuir, 32(26), 6713-6722. doi:10.1021/acs.langmuir.6b01995 es_ES
dc.description.references Uchman, M., Ďorďovič, V., Tošner, Z., & Matějíček, P. (2015). Classical Amphiphilic Behavior of Nonclassical Amphiphiles: A Comparison of Metallacarborane Self-Assembly with SDS Micellization. Angewandte Chemie International Edition, 54(47), 14113-14117. doi:10.1002/anie.201506545 es_ES
dc.description.references Núñez, R., Romero, I., Teixidor, F., & Viñas, C. (2016). Icosahedral boron clusters: a perfect tool for the enhancement of polymer features. Chemical Society Reviews, 45(19), 5147-5173. doi:10.1039/c6cs00159a es_ES
dc.description.references Núñez, R., Tarrés, M., Ferrer-Ugalde, A., de Biani, F. F., & Teixidor, F. (2016). Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives. Chemical Reviews, 116(23), 14307-14378. doi:10.1021/acs.chemrev.6b00198 es_ES
dc.description.references Masalles, C., Borrós, S., Viñas, C., & Teixidor, F. (2000). Are Low-Coordinating Anions of Interest as Doping Agents in Organic Conducting Polymers? Advanced Materials, 12(16), 1199-1202. doi:10.1002/1521-4095(200008)12:16<1199::aid-adma1199>3.0.co;2-w es_ES
dc.description.references Masalles, C., Borrós, S., Viñas, C., & Teixidor, F. (2002). Surface Layer Formation on Polypyrrole Films. Advanced Materials, 14(6), 449-452. doi:10.1002/1521-4095(20020318)14:6<449::aid-adma449>3.0.co;2-4 es_ES
dc.description.references Fabre, B., Clark, J. C., & Vicente, M. G. H. (2006). Synthesis and Electrochemistry of Carboranylpyrroles. Toward the Preparation of Electrochemically and Thermally Resistant Conjugated Polymers. Macromolecules, 39(1), 112-119. doi:10.1021/ma051508v es_ES
dc.description.references Hao, E., Fabre, B., Fronczek, F. R., & Vicente, M. G. H. (2007). Syntheses and Electropolymerization of Carboranyl-Functionalized Pyrroles and Thiophenes. Chemistry of Materials, 19(25), 6195-6205. doi:10.1021/cm701935n es_ES
dc.description.references Masalles, C., Teixidor, F., Borrós, S., & Viñas, C. (2002). Cobaltabisdicarbollide anion [Co(C2B9H11)2]− as doping agent on intelligent membranes for ion capture. Journal of Organometallic Chemistry, 657(1-2), 239-246. doi:10.1016/s0022-328x(02)01432-8 es_ES
dc.description.references Masalles, C., Llop, J., Viñas, C., & Teixidor, F. (2002). Extraordinary Overoxidation Resistance Increase in Self-Doped Polypyrroles by Using Non-conventional Low Charge-Density Anions. Advanced Materials, 14(11), 826. doi:10.1002/1521-4095(20020605)14:11<826::aid-adma826>3.0.co;2-c es_ES
dc.description.references Fuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526b es_ES
dc.description.references Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123 es_ES
dc.description.references Alberti, G., Narducci, R., & Sganappa, M. (2008). Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix. Journal of Power Sources, 178(2), 575-583. doi:10.1016/j.jpowsour.2007.09.034 es_ES
dc.description.references Sukumar, P. R., Wu, W., Markova, D., Ünsal, Ö., Klapper, M., & Müllen, K. (2007). Functionalized Poly(benzimidazole)s as Membrane Materials for Fuel Cells. Macromolecular Chemistry and Physics, 208(19–20), 2258-2267. doi:10.1002/macp.200700390 es_ES
dc.description.references Pu, H., Liu, L., Chang, Z., & Yuan, J. (2009). Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2. Electrochimica Acta, 54(28), 7536-7541. doi:10.1016/j.electacta.2009.08.011 es_ES
dc.description.references Singha, S., & Jana, T. (2014). Structure and Properties of Polybenzimidazole/Silica Nanocomposite Electrolyte Membrane: Influence of Organic/Inorganic Interface. ACS Applied Materials & Interfaces, 6(23), 21286-21296. doi:10.1021/am506260j es_ES
dc.description.references Kutcherlapati, S. R., Koyilapu, R., & Jana, T. (2017). Poly(N -vinyl imidazole) grafted silica nanofillers: Synthesis by RAFT polymerization and nanocomposites with polybenzimidazole. Journal of Polymer Science Part A: Polymer Chemistry, 56(4), 365-375. doi:10.1002/pola.28917 es_ES
dc.description.references Maity, S., Singha, S., & Jana, T. (2015). Low acid leaching PEM for fuel cell based on polybenzimidazole nanocomposites with protic ionic liquid modified silica. Polymer, 66, 76-85. doi:10.1016/j.polymer.2015.03.040 es_ES
dc.description.references Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481-53491. doi:10.1039/c7ra10484g es_ES
dc.description.references Dyre, J. C., & Schrøder, T. B. (2000). Universality of ac conduction in disordered solids. Reviews of Modern Physics, 72(3), 873-892. doi:10.1103/revmodphys.72.873 es_ES
dc.description.references Roling, B., Martiny, C., & Brückner, S. (2001). Ion transport in glass: Influence of glassy structure on spatial extent of nonrandom ion hopping. Physical Review B, 63(21). doi:10.1103/physrevb.63.214203 es_ES
dc.description.references Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301 es_ES
dc.description.references Pu, H., Lou, L., Guan, Y., Chang, Z., & Wan, D. (2012). Proton exchange membranes based on semi-interpenetrating polymer networks of polybenzimidazole and perfluorosulfonic acid polymer with hollow silica spheres as micro-reservoir. Journal of Membrane Science, 415-416, 496-503. doi:10.1016/j.memsci.2012.05.036 es_ES
dc.description.references Tominaka, S., & Cheetham, A. K. (2014). Intrinsic and extrinsic proton conductivity in metal-organic frameworks. RSC Adv., 4(97), 54382-54387. doi:10.1039/c4ra11473f es_ES
dc.description.references Barbosa, P., Rosero-Navarro, N. C., Shi, F.-N., & Figueiredo, F. M. L. (2015). Protonic Conductivity of Nanocrystalline Zeolitic Imidazolate Framework 8. Electrochimica Acta, 153, 19-27. doi:10.1016/j.electacta.2014.11.093 es_ES
dc.description.references Krause, C., Sangoro, J. R., Iacob, C., & Kremer, F. (2010). Charge Transport and Dipolar Relaxations in Imidazolium-Based Ionic Liquids. The Journal of Physical Chemistry B, 114(1), 382-386. doi:10.1021/jp908519u es_ES
dc.description.references Rivera, A., & Rössler, E. A. (2006). Evidence of secondary relaxations in the dielectric spectra of ionic liquids. Physical Review B, 73(21). doi:10.1103/physrevb.73.212201 es_ES
dc.description.references Maity, S., & Jana, T. (2014). Polybenzimidazole Block Copolymers for Fuel Cell: Synthesis and Studies of Block Length Effects on Nanophase Separation, Mechanical Properties, and Proton Conductivity of PEM. ACS Applied Materials & Interfaces, 6(9), 6851-6864. doi:10.1021/am500668c es_ES
dc.description.references Chuang, S.-W., Hsu, S. L.-C., & Hsu, C.-L. (2007). Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications. Journal of Power Sources, 168(1), 172-177. doi:10.1016/j.jpowsour.2007.03.021 es_ES
dc.description.references Mustarelli, P., Quartarone, E., Grandi, S., Carollo, A., & Magistris, A. (2008). Polybenzimidazole-Based Membranes as a Real Alternative to Nafion for Fuel Cells Operating at Low Temperature. Advanced Materials, 20(7), 1339-1343. doi:10.1002/adma.200701767 es_ES
dc.description.references Lobato, J., Cañizares, P., Rodrigo, M. A., Úbeda, D., & Pinar, F. J. (2011). Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. Journal of Power Sources, 196(20), 8265-8271. doi:10.1016/j.jpowsour.2011.06.011 es_ES
dc.description.references Sørensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235 es_ES
dc.description.references Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947 es_ES
dc.description.references Munar, A., Andrio, A., Iserte, R., & Compañ, V. (2011). Ionic conductivity and diffusion coefficients of lithium salt polymer electrolytes measured with dielectric spectroscopy. Journal of Non-Crystalline Solids, 357(16-17), 3064-3069. doi:10.1016/j.jnoncrysol.2011.04.012 es_ES
dc.description.references Macdonald, J. R. (1953). Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Physical Review, 92(1), 4-17. doi:10.1103/physrev.92.4 es_ES
dc.description.references Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700 es_ES
dc.description.references Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638 es_ES
dc.description.references Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-w es_ES
dc.description.references Jönsson, M., Welch, K., Hamp, S., & Strømme, M. (2006). Bacteria Counting with Impedance Spectroscopy in a Micro Probe Station. The Journal of Physical Chemistry B, 110(20), 10165-10169. doi:10.1021/jp060148q es_ES
dc.description.references Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004 es_ES
dc.description.references Pasini Cabello, S. D., Mollá, S., Ochoa, N. A., Marchese, J., Giménez, E., & Compañ, V. (2014). New bio-polymeric membranes composed of alginate-carrageenan to be applied as polymer electrolyte membranes for DMFC. Journal of Power Sources, 265, 345-355. doi:10.1016/j.jpowsour.2014.04.093 es_ES
dc.description.references García-Bernabé, A., Rivera, A., Granados, A., Luis, S. V., & Compañ, V. (2016). Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochimica Acta, 213, 887-897. doi:10.1016/j.electacta.2016.08.018 es_ES
dc.description.references Compañ, V., Molla, S., García Verdugo, E., Luis, S. V., & Burguete, M. I. (2012). Synthesis and characterization of the conductivity and polarization processes in supported ionic liquid-like phases (SILLPs). Journal of Non-Crystalline Solids, 358(9), 1228-1237. doi:10.1016/j.jnoncrysol.2012.02.028 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem