- -

Structural and dielectric properties of Cobaltacarborane Composite Polybenzimidazole Membranes as solid polymer electrolytes at high temperature

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structural and dielectric properties of Cobaltacarborane Composite Polybenzimidazole Membranes as solid polymer electrolytes at high temperature

Mostrar el registro completo del ítem

Fuentes, I.; Andrio Balado, A.; Garcia Bernabe, A.; Escorihuela Fuentes, J.; Viñas, C.; Teixidor, F.; Compañ Moreno, V. (2018). Structural and dielectric properties of Cobaltacarborane Composite Polybenzimidazole Membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics. 20(15):10173-10185. https://doi.org/10.1039/c8cp00372f

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145106

Ficheros en el ítem

Metadatos del ítem

Título: Structural and dielectric properties of Cobaltacarborane Composite Polybenzimidazole Membranes as solid polymer electrolytes at high temperature
Autor: Fuentes, I. Andrio Balado, Andreu Garcia Bernabe, Abel Escorihuela Fuentes, Jorge Viñas, Clara Teixidor, F. Compañ Moreno, Vicente
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] The conductivity of a series of composite membranes, based on polybenzimidazole (PBI) containing the metallacarborane salt M[Co(C2B9H11)(2)], M[COSANE] and tetraphenylborate, M[B(C6H5)(4)], M[TPB] both anions having ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Chemistry Chemical Physics. (issn: 1463-9076 )
DOI: 10.1039/c8cp00372f
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8cp00372f
Código del Proyecto:
info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 149/
info:eu-repo/grantAgreement/MINECO//CTQ2016-75150-R/ES/MATERIALES BASADOS EN CLUSTERES DE BORO PARA ENERGIA SOSTENIBLE Y APLICACIONES MEDIOAMBIENTALES/
info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/
Agradecimientos:
We gratefully acknowledge Spanish Ministerio de Economia y Competitividad (MINECO) for financial support by the ENE/2015-69203-R project and CTQ2016-75150-R project, and Generalitat de Catalunya (2014/SGR/149). I. Fuentes ...[+]
Tipo: Artículo

References

I. E. A. Statistics, IEA, Paris, France, 2016

Li, W., Dahn, J. R., & Wainwright, D. S. (1994). Rechargeable Lithium Batteries with Aqueous Electrolytes. Science, 264(5162), 1115-1118. doi:10.1126/science.264.5162.1115

Lee, H., Yanilmaz, M., Toprakci, O., Fu, K., & Zhang, X. (2014). A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci., 7(12), 3857-3886. doi:10.1039/c4ee01432d [+]
I. E. A. Statistics, IEA, Paris, France, 2016

Li, W., Dahn, J. R., & Wainwright, D. S. (1994). Rechargeable Lithium Batteries with Aqueous Electrolytes. Science, 264(5162), 1115-1118. doi:10.1126/science.264.5162.1115

Lee, H., Yanilmaz, M., Toprakci, O., Fu, K., & Zhang, X. (2014). A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci., 7(12), 3857-3886. doi:10.1039/c4ee01432d

Anothumakkool, B., Torris A. T., A., Veeliyath, S., Vijayakumar, V., Badiger, M. V., & Kurungot, S. (2016). High-Performance Flexible Solid-State Supercapacitor with an Extended Nanoregime Interface through in Situ Polymer Electrolyte Generation. ACS Applied Materials & Interfaces, 8(2), 1233-1241. doi:10.1021/acsami.5b09677

Huang, C., Zhang, J., Snaith, H. J., & Grant, P. S. (2016). Engineering the Membrane/Electrode Interface To Improve the Performance of Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 8(32), 20756-20765. doi:10.1021/acsami.6b05789

Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. doi:10.1016/j.apenergy.2010.09.030

Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k

Lufrano, F., Baglio, V., Staiti, P., Antonucci, V., & Arico’, A. S. (2013). Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 243, 519-534. doi:10.1016/j.jpowsour.2013.05.180

Awang, N., Ismail, A. F., Jaafar, J., Matsuura, T., Junoh, H., Othman, M. H. D., & Rahman, M. A. (2015). Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: A review. Reactive and Functional Polymers, 86, 248-258. doi:10.1016/j.reactfunctpolym.2014.09.019

Nunes, S. (2002). Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells. Journal of Membrane Science, 203(1-2), 215-225. doi:10.1016/s0376-7388(02)00009-1

Jung, D. H., Cho, S. Y., Peck, D. H., Shin, D. R., & Kim, J. S. (2003). Preparation and performance of a Nafion®/montmorillonite nanocomposite membrane for direct methanol fuel cell. Journal of Power Sources, 118(1-2), 205-211. doi:10.1016/s0378-7753(03)00095-8

Song, M.-K., Park, S.-B., Kim, Y.-T., Kim, K.-H., Min, S.-K., & Rhee, H.-W. (2004). Characterization of polymer-layered silicate nanocomposite membranes for direct methanol fuel cells. Electrochimica Acta, 50(2-3), 639-643. doi:10.1016/j.electacta.2003.12.078

GAOWEN, Z., & ZHENTAO, Z. (2005). Organic/inorganic composite membranes for application in DMFC. Journal of Membrane Science, 261(1-2), 107-113. doi:10.1016/j.memsci.2005.03.036

Hande, V. R., Rath, S. K., Rao, S., & Patri, M. (2011). Cross-linked sulfonated poly (ether ether ketone) (SPEEK)/reactive organoclay nanocomposite proton exchange membranes (PEM). Journal of Membrane Science, 372(1-2), 40-48. doi:10.1016/j.memsci.2011.01.042

Shimizu, G. K. H. (2005). Assembly of metal ions and ligands with adaptable coordinative tendencies as a route to functional metal-organic solids. Journal of Solid State Chemistry, 178(8), 2519-2526. doi:10.1016/j.jssc.2005.07.003

Li, Q., He, R., Jensen, J. O., & Bjerrum, N. J. (2003). Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemistry of Materials, 15(26), 4896-4915. doi:10.1021/cm0310519

Hurd, J. A., Vaidhyanathan, R., Thangadurai, V., Ratcliffe, C. I., Moudrakovski, I. L., & Shimizu, G. K. H. (2009). Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework. Nature Chemistry, 1(9), 705-710. doi:10.1038/nchem.402

Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., … Kær, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024

González-Cardoso, P., Stoica, A.-I., Farràs, P., Pepiol, A., Viñas, C., & Teixidor, F. (2010). Additive Tuning of Redox Potential in Metallacarboranes by Sequential Halogen Substitution. Chemistry - A European Journal, 16(22), 6660-6665. doi:10.1002/chem.200902558

Pepiol, A., Teixidor, F., Sillanpää, R., Lupu, M., & Viñas, C. (2011). Stepwise Sequential Redox Potential Modulation Possible on a Single Platform. Angewandte Chemie International Edition, 50(52), 12491-12495. doi:10.1002/anie.201105668

Tarrés, M., Arderiu, V. S., Zaulet, A., Viñas, C., Fabrizi de Biani, F., & Teixidor, F. (2015). How to get the desired reduction voltage in a single framework! Metallacarborane as an optimal probe for sequential voltage tuning. Dalton Transactions, 44(26), 11690-11695. doi:10.1039/c5dt01464f

Olid, D., Núñez, R., Viñas, C., & Teixidor, F. (2013). Methods to produce B–C, B–P, B–N and B–S bonds in boron clusters. Chemical Society Reviews, 42(8), 3318. doi:10.1039/c2cs35441a

Bauduin, P., Prevost, S., Farràs, P., Teixidor, F., Diat, O., & Zemb, T. (2011). A Theta-Shaped Amphiphilic Cobaltabisdicarbollide Anion: Transition From Monolayer Vesicles to Micelles. Angewandte Chemie International Edition, 50(23), 5298-5300. doi:10.1002/anie.201100410

Brusselle, D., Bauduin, P., Girard, L., Zaulet, A., Viñas, C., Teixidor, F., … Diat, O. (2013). Lyotropic Lamellar Phase Formed from Monolayered θ-Shaped Carborane-Cage Amphiphiles. Angewandte Chemie International Edition, 52(46), 12114-12118. doi:10.1002/anie.201307357

Gassin, P.-M., Girard, L., Martin-Gassin, G., Brusselle, D., Jonchère, A., Diat, O., … Bauduin, P. (2015). Surface Activity and Molecular Organization of Metallacarboranes at the Air–Water Interface Revealed by Nonlinear Optics. Langmuir, 31(8), 2297-2303. doi:10.1021/acs.langmuir.5b00125

Ďorďovič, V., Tošner, Z., Uchman, M., Zhigunov, A., Reza, M., Ruokolainen, J., … Matějíček, P. (2016). Stealth Amphiphiles: Self-Assembly of Polyhedral Boron Clusters. Langmuir, 32(26), 6713-6722. doi:10.1021/acs.langmuir.6b01995

Uchman, M., Ďorďovič, V., Tošner, Z., & Matějíček, P. (2015). Classical Amphiphilic Behavior of Nonclassical Amphiphiles: A Comparison of Metallacarborane Self-Assembly with SDS Micellization. Angewandte Chemie International Edition, 54(47), 14113-14117. doi:10.1002/anie.201506545

Núñez, R., Romero, I., Teixidor, F., & Viñas, C. (2016). Icosahedral boron clusters: a perfect tool for the enhancement of polymer features. Chemical Society Reviews, 45(19), 5147-5173. doi:10.1039/c6cs00159a

Núñez, R., Tarrés, M., Ferrer-Ugalde, A., de Biani, F. F., & Teixidor, F. (2016). Electrochemistry and Photoluminescence of Icosahedral Carboranes, Boranes, Metallacarboranes, and Their Derivatives. Chemical Reviews, 116(23), 14307-14378. doi:10.1021/acs.chemrev.6b00198

Masalles, C., Borrós, S., Viñas, C., & Teixidor, F. (2000). Are Low-Coordinating Anions of Interest as Doping Agents in Organic Conducting Polymers? Advanced Materials, 12(16), 1199-1202. doi:10.1002/1521-4095(200008)12:16<1199::aid-adma1199>3.0.co;2-w

Masalles, C., Borrós, S., Viñas, C., & Teixidor, F. (2002). Surface Layer Formation on Polypyrrole Films. Advanced Materials, 14(6), 449-452. doi:10.1002/1521-4095(20020318)14:6<449::aid-adma449>3.0.co;2-4

Fabre, B., Clark, J. C., & Vicente, M. G. H. (2006). Synthesis and Electrochemistry of Carboranylpyrroles. Toward the Preparation of Electrochemically and Thermally Resistant Conjugated Polymers. Macromolecules, 39(1), 112-119. doi:10.1021/ma051508v

Hao, E., Fabre, B., Fronczek, F. R., & Vicente, M. G. H. (2007). Syntheses and Electropolymerization of Carboranyl-Functionalized Pyrroles and Thiophenes. Chemistry of Materials, 19(25), 6195-6205. doi:10.1021/cm701935n

Masalles, C., Teixidor, F., Borrós, S., & Viñas, C. (2002). Cobaltabisdicarbollide anion [Co(C2B9H11)2]− as doping agent on intelligent membranes for ion capture. Journal of Organometallic Chemistry, 657(1-2), 239-246. doi:10.1016/s0022-328x(02)01432-8

Masalles, C., Llop, J., Viñas, C., & Teixidor, F. (2002). Extraordinary Overoxidation Resistance Increase in Self-Doped Polypyrroles by Using Non-conventional Low Charge-Density Anions. Advanced Materials, 14(11), 826. doi:10.1002/1521-4095(20020605)14:11<826::aid-adma826>3.0.co;2-c

Fuentes, I., Andrio, A., Teixidor, F., Viñas, C., & Compañ, V. (2017). Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Physical Chemistry Chemical Physics, 19(23), 15177-15186. doi:10.1039/c7cp02526b

Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123

Alberti, G., Narducci, R., & Sganappa, M. (2008). Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix. Journal of Power Sources, 178(2), 575-583. doi:10.1016/j.jpowsour.2007.09.034

Sukumar, P. R., Wu, W., Markova, D., Ünsal, Ö., Klapper, M., & Müllen, K. (2007). Functionalized Poly(benzimidazole)s as Membrane Materials for Fuel Cells. Macromolecular Chemistry and Physics, 208(19–20), 2258-2267. doi:10.1002/macp.200700390

Pu, H., Liu, L., Chang, Z., & Yuan, J. (2009). Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2. Electrochimica Acta, 54(28), 7536-7541. doi:10.1016/j.electacta.2009.08.011

Singha, S., & Jana, T. (2014). Structure and Properties of Polybenzimidazole/Silica Nanocomposite Electrolyte Membrane: Influence of Organic/Inorganic Interface. ACS Applied Materials & Interfaces, 6(23), 21286-21296. doi:10.1021/am506260j

Kutcherlapati, S. R., Koyilapu, R., & Jana, T. (2017). Poly(N -vinyl imidazole) grafted silica nanofillers: Synthesis by RAFT polymerization and nanocomposites with polybenzimidazole. Journal of Polymer Science Part A: Polymer Chemistry, 56(4), 365-375. doi:10.1002/pola.28917

Maity, S., Singha, S., & Jana, T. (2015). Low acid leaching PEM for fuel cell based on polybenzimidazole nanocomposites with protic ionic liquid modified silica. Polymer, 66, 76-85. doi:10.1016/j.polymer.2015.03.040

Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481-53491. doi:10.1039/c7ra10484g

Dyre, J. C., & Schrøder, T. B. (2000). Universality of ac conduction in disordered solids. Reviews of Modern Physics, 72(3), 873-892. doi:10.1103/revmodphys.72.873

Roling, B., Martiny, C., & Brückner, S. (2001). Ion transport in glass: Influence of glassy structure on spatial extent of nonrandom ion hopping. Physical Review B, 63(21). doi:10.1103/physrevb.63.214203

Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301

Pu, H., Lou, L., Guan, Y., Chang, Z., & Wan, D. (2012). Proton exchange membranes based on semi-interpenetrating polymer networks of polybenzimidazole and perfluorosulfonic acid polymer with hollow silica spheres as micro-reservoir. Journal of Membrane Science, 415-416, 496-503. doi:10.1016/j.memsci.2012.05.036

Tominaka, S., & Cheetham, A. K. (2014). Intrinsic and extrinsic proton conductivity in metal-organic frameworks. RSC Adv., 4(97), 54382-54387. doi:10.1039/c4ra11473f

Barbosa, P., Rosero-Navarro, N. C., Shi, F.-N., & Figueiredo, F. M. L. (2015). Protonic Conductivity of Nanocrystalline Zeolitic Imidazolate Framework 8. Electrochimica Acta, 153, 19-27. doi:10.1016/j.electacta.2014.11.093

Krause, C., Sangoro, J. R., Iacob, C., & Kremer, F. (2010). Charge Transport and Dipolar Relaxations in Imidazolium-Based Ionic Liquids. The Journal of Physical Chemistry B, 114(1), 382-386. doi:10.1021/jp908519u

Rivera, A., & Rössler, E. A. (2006). Evidence of secondary relaxations in the dielectric spectra of ionic liquids. Physical Review B, 73(21). doi:10.1103/physrevb.73.212201

Maity, S., & Jana, T. (2014). Polybenzimidazole Block Copolymers for Fuel Cell: Synthesis and Studies of Block Length Effects on Nanophase Separation, Mechanical Properties, and Proton Conductivity of PEM. ACS Applied Materials & Interfaces, 6(9), 6851-6864. doi:10.1021/am500668c

Chuang, S.-W., Hsu, S. L.-C., & Hsu, C.-L. (2007). Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications. Journal of Power Sources, 168(1), 172-177. doi:10.1016/j.jpowsour.2007.03.021

Mustarelli, P., Quartarone, E., Grandi, S., Carollo, A., & Magistris, A. (2008). Polybenzimidazole-Based Membranes as a Real Alternative to Nafion for Fuel Cells Operating at Low Temperature. Advanced Materials, 20(7), 1339-1343. doi:10.1002/adma.200701767

Lobato, J., Cañizares, P., Rodrigo, M. A., Úbeda, D., & Pinar, F. J. (2011). Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. Journal of Power Sources, 196(20), 8265-8271. doi:10.1016/j.jpowsour.2011.06.011

Sørensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235

Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947

Munar, A., Andrio, A., Iserte, R., & Compañ, V. (2011). Ionic conductivity and diffusion coefficients of lithium salt polymer electrolytes measured with dielectric spectroscopy. Journal of Non-Crystalline Solids, 357(16-17), 3064-3069. doi:10.1016/j.jnoncrysol.2011.04.012

Macdonald, J. R. (1953). Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Physical Review, 92(1), 4-17. doi:10.1103/physrev.92.4

Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700

Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638

Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-w

Jönsson, M., Welch, K., Hamp, S., & Strømme, M. (2006). Bacteria Counting with Impedance Spectroscopy in a Micro Probe Station. The Journal of Physical Chemistry B, 110(20), 10165-10169. doi:10.1021/jp060148q

Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004

Pasini Cabello, S. D., Mollá, S., Ochoa, N. A., Marchese, J., Giménez, E., & Compañ, V. (2014). New bio-polymeric membranes composed of alginate-carrageenan to be applied as polymer electrolyte membranes for DMFC. Journal of Power Sources, 265, 345-355. doi:10.1016/j.jpowsour.2014.04.093

García-Bernabé, A., Rivera, A., Granados, A., Luis, S. V., & Compañ, V. (2016). Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochimica Acta, 213, 887-897. doi:10.1016/j.electacta.2016.08.018

Compañ, V., Molla, S., García Verdugo, E., Luis, S. V., & Burguete, M. I. (2012). Synthesis and characterization of the conductivity and polarization processes in supported ionic liquid-like phases (SILLPs). Journal of Non-Crystalline Solids, 358(9), 1228-1237. doi:10.1016/j.jnoncrysol.2012.02.028

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem