- -

Dust particles of finite dimensions in complex plasmas: thermodynamics and dust-acoustic wave dispersion

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dust particles of finite dimensions in complex plasmas: thermodynamics and dust-acoustic wave dispersion

Mostrar el registro completo del ítem

Davletov, A.; Yerimbetova, L.; Arkhipov, YV.; Mukhametkarimov, YS.; Kissan, A.; Tkachenko Gorski, IM. (2018). Dust particles of finite dimensions in complex plasmas: thermodynamics and dust-acoustic wave dispersion. Journal of Plasma Physics. 84(4):1-19. https://doi.org/10.1017/S0022377818000879

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145115

Ficheros en el ítem

Metadatos del ítem

Título: Dust particles of finite dimensions in complex plasmas: thermodynamics and dust-acoustic wave dispersion
Autor: Davletov, A.E. Yerimbetova, L.T. Arkhipov, Yu. V. Mukhametkarimov, Ye. S. Kissan, A. Tkachenko Gorski, Igor Mijail
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Grounded on the premise that dust particles are charged hard balls, the analysis in Davletov et al. (Contrib. Plasma Phys., vol. 56, 2016, 308) provides an original pseudopotential model of intergrain interaction in ...[+]
Palabras clave: Dusty plasmas
Derechos de uso: Cerrado
Fuente:
Journal of Plasma Physics. (issn: 0022-3778 )
DOI: 10.1017/S0022377818000879
Editorial:
Cambridge University Press
Versión del editor: https://doi.org/10.1017/S0022377818000879
Código del Proyecto:
info:eu-repo/grantAgreement/Ministry of Education and Science of the Republic of Kazakhstan//AP05132677/
info:eu-repo/grantAgreement/Ministry of Education and Science of the Republic of Kazakhstan//AP05132333/
info:eu-repo/grantAgreement/Ministry of Education and Science of the Republic of Kazakhstan//BR05236730/
Agradecimientos:
The authors are indebted to the Ministry of Education and Science of the Republic of Kazakhstan for financial support through the state grants AP05132677, AP05132333 and the program BR05236730.
Tipo: Artículo

References

Tejero, C. F., Lutsko, J. F., Colot, J. L., & Baus, M. (1992). Thermodynamic properties of the fluid, fcc, and bcc phases of monodisperse charge-stabilized colloidal suspensions within the Yukawa model. Physical Review A, 46(6), 3373-3379. doi:10.1103/physreva.46.3373

Tolias, P., Ratynskaia, S., De Angeli, M., De Temmerman, G., Ripamonti, D., Riva, G., … Litnovsky, A. (2016). Dust remobilization in fusion plasmas under steady state conditions. Plasma Physics and Controlled Fusion, 58(2), 025009. doi:10.1088/0741-3335/58/2/025009

Whipple, E. C. (1981). Potentials of surfaces in space. Reports on Progress in Physics, 44(11), 1197-1250. doi:10.1088/0034-4885/44/11/002 [+]
Tejero, C. F., Lutsko, J. F., Colot, J. L., & Baus, M. (1992). Thermodynamic properties of the fluid, fcc, and bcc phases of monodisperse charge-stabilized colloidal suspensions within the Yukawa model. Physical Review A, 46(6), 3373-3379. doi:10.1103/physreva.46.3373

Tolias, P., Ratynskaia, S., De Angeli, M., De Temmerman, G., Ripamonti, D., Riva, G., … Litnovsky, A. (2016). Dust remobilization in fusion plasmas under steady state conditions. Plasma Physics and Controlled Fusion, 58(2), 025009. doi:10.1088/0741-3335/58/2/025009

Whipple, E. C. (1981). Potentials of surfaces in space. Reports on Progress in Physics, 44(11), 1197-1250. doi:10.1088/0034-4885/44/11/002

Davletov, A. E., Yerimbetova, L. T., Mukhametkarimov, Y. S., & Ospanova, A. K. (2014). Finite size effects in the static structure factor of dusty plasmas. Physics of Plasmas, 21(7), 073704. doi:10.1063/1.4887009

Shukla, P. K., & Eliasson, B. (2009). Colloquium: Fundamentals of dust-plasma interactions. Reviews of Modern Physics, 81(1), 25-44. doi:10.1103/revmodphys.81.25

Seok, J. Y., Koo, B.-C., & Hirashita, H. (2015). DUST COOLING IN SUPERNOVA REMNANTS IN THE LARGE MAGELLANIC CLOUD. The Astrophysical Journal, 807(1), 100. doi:10.1088/0004-637x/807/1/100

Piel, A. (2016). Plasma crystals: experiments and simulation. Plasma Physics and Controlled Fusion, 59(1), 014001. doi:10.1088/0741-3335/59/1/014001

Hamaguchi, S., & Ohta, H. (2001). Waves in Strongly-Coupled Classical One-Component Plasmas and Yukawa Fluids. Physica Scripta, T89(1), 127. doi:10.1238/physica.topical.089a00127

Filippov, A. V., Starostin, A. N., Tkachenko, I. M., & Fortov, V. E. (2011). Dust acoustic waves in complex plasmas at elevated pressure. Physics Letters A, 376(1), 31-38. doi:10.1016/j.physleta.2011.10.030

Delzanno, G. L., & Tang, X.-Z. (2015). Comparison of dust charging between orbital-motion-limited theory and particle-in-cell simulations. Physics of Plasmas, 22(11), 113703. doi:10.1063/1.4935697

Heidemann, R. J., Couëdel, L., Zhdanov, S. K., Sütterlin, K. R., Schwabe, M., Thomas, H. M., … Vinogradov, P. (2011). Comprehensive experimental study of heartbeat oscillations observed under microgravity conditions in the PK-3 Plus laboratory on board the International Space Station. Physics of Plasmas, 18(5), 053701. doi:10.1063/1.3574905

Lado, F. (1973). Perturbation Correction for the Free Energy and Structure of Simple Fluids. Physical Review A, 8(5), 2548-2552. doi:10.1103/physreva.8.2548

Rosenfeld, Y. (1986). Comments on the variational modified-hypernetted-chain theory for simple fluids. Journal of Statistical Physics, 42(3-4), 437-457. doi:10.1007/bf01127720

Kang, H. S., & Ree, F. H. (1995). Applications of the perturbative hypernetted‐chain equation to the one‐component plasma and the one‐component charged hard‐sphere systems. The Journal of Chemical Physics, 103(21), 9370-9378. doi:10.1063/1.469997

Kählert, H., & Bonitz, M. (2010). How Spherical Plasma Crystals Form. Physical Review Letters, 104(1). doi:10.1103/physrevlett.104.015001

Ohta, H., & Hamaguchi, S. (2000). Wave Dispersion Relations in Yukawa Fluids. Physical Review Letters, 84(26), 6026-6029. doi:10.1103/physrevlett.84.6026

Castaldo, C., Ratynskaia, S., Pericoli, V., Angelis, U. de, Rypdal, K., Pieroni, L., … Morfill, G. . (2007). Diagnostics of fast dust particles in tokamak edge plasmas. Nuclear Fusion, 47(7), L5-L9. doi:10.1088/0029-5515/47/7/l02

Filippov, A. V., Starostin, A. N., Tkachenko, I. M., Fortov, V. E., Ballester, D., & Conde, L. (2010). Dust acoustic waves in a nonequilibrium dusty plasma. JETP Letters, 91(11), 558-565. doi:10.1134/s0021364010110044

Arkhipov, Y. V., Askaruly, A., Davletov, A. E., Dubovtsev, D. Y., Donkó, Z., Hartmann, P., … Tkachenko, I. M. (2017). Direct Determination of Dynamic Properties of Coulomb and Yukawa Classical One-Component Plasmas. Physical Review Letters, 119(4). doi:10.1103/physrevlett.119.045001

Khrapak, S., & Morfill, G. (2009). Basic Processes in Complex (Dusty) Plasmas: Charging, Interactions, and Ion Drag Force. Contributions to Plasma Physics, 49(3), 148-168. doi:10.1002/ctpp.200910018

Mamun, A. A., Shukla, P. K., & Farid, T. (2000). Low-frequency electrostatic dust-modes in a strongly coupled dusty plasma with dust charge fluctuations. Physics of Plasmas, 7(6), 2329-2334. doi:10.1063/1.874068

Kersten, H., Deutsch, H., Stoffels, E., Stoffels, W. W., Kroesen, G. M. W., & Hippler, R. (2001). Micro-Disperse Particles in Plasmas: From Disturbing Side Effects to New Applications. Contributions to Plasma Physics, 41(6), 598-609. doi:10.1002/1521-3986(200111)41:6<598::aid-ctpp598>3.0.co;2-z

Kalman, G. J., Hartmann, P., Donkó, Z., & Rosenberg, M. (2004). Two-Dimensional Yukawa Liquids: Correlation and Dynamics. Physical Review Letters, 92(6). doi:10.1103/physrevlett.92.065001

Rosenfeld, Y., & Ashcroft, N. W. (1979). Theory of simple classical fluids: Universality in the short-range structure. Physical Review A, 20(3), 1208-1235. doi:10.1103/physreva.20.1208

Kaw, P. K. (2001). Collective modes in a strongly coupled dusty plasma. Physics of Plasmas, 8(5), 1870-1878. doi:10.1063/1.1348335

Lado, F., Foiles, S. M., & Ashcroft, N. W. (1983). Solutions of the reference-hypernetted-chain equation with minimized free energy. Physical Review A, 28(4), 2374-2379. doi:10.1103/physreva.28.2374

Khrapak, S. A., & Morfill, G. (2001). Waves in two component electron-dust plasma. Physics of Plasmas, 8(6), 2629-2634. doi:10.1063/1.1370061

Ivlev, A. V., Samsonov, D., Goree, J., Morfill, G., & Fortov, V. E. (1999). Acoustic modes in a collisional dusty plasma. Physics of Plasmas, 6(3), 741-750. doi:10.1063/1.873311

Fortov, V. E., Khrapak, A. G., Khrapak, S. A., Molotkov, V. I., & Petrov, O. F. (2004). Dusty plasmas. Physics-Uspekhi, 47(5), 447-492. doi:10.1070/pu2004v047n05abeh001689

Kundu, M., Avinash, K., Sen, A., & Ganesh, R. (2014). On the existence of vapor-liquid phase transition in dusty plasmas. Physics of Plasmas, 21(10), 103705. doi:10.1063/1.4897946

Lado, F. (1976). Charged hard spheres in a uniform neutralizing background using ‘mixed’ integral equations. Molecular Physics, 31(4), 1117-1127. doi:10.1080/00268977600100851

Meijer, E. J., & Frenkel, D. (1991). Melting line of Yukawa system by computer simulation. The Journal of Chemical Physics, 94(3), 2269-2271. doi:10.1063/1.459898

Avinash, K., Merlino, R. L., & Shukla, P. K. (2011). Anomalous dust temperature in dusty plasma experiments. Physics Letters A, 375(30-31), 2854-2857. doi:10.1016/j.physleta.2011.06.009

Arkhipov, Y. V., Baimbetov, F. B., Davletov, A. E., & Ramazanov, T. S. (1999). Equilibrium Properties of H-Plasma. Contributions to Plasma Physics, 39(6), 495-499. doi:10.1002/ctpp.2150390603

Malmrose, M. P., Marscher, A. P., Jorstad, S. G., Nikutta, R., & Elitzur, M. (2011). EMISSION FROM HOT DUST IN THE INFRARED SPECTRA OF GAMMA-RAY BRIGHT BLAZARS. The Astrophysical Journal, 732(2), 116. doi:10.1088/0004-637x/732/2/116

Keidar, M., Shashurin, A., Volotskova, O., Ann Stepp, M., Srinivasan, P., Sandler, A., & Trink, B. (2013). Cold atmospheric plasma in cancer therapy. Physics of Plasmas, 20(5), 057101. doi:10.1063/1.4801516

Kokura, H., Yoneda, S., Nakamura, K., Mitsuhira, N., Nakamura, M., & Sugai, H. (1999). Diagnostic of Surface Wave Plasma for Oxide Etching in Comparison with Inductive RF Plasma. Japanese Journal of Applied Physics, 38(Part 1, No. 9A), 5256-5261. doi:10.1143/jjap.38.5256

Fedoseev, A. V., Sukhinin, G. I., Abdirakhmanov, A. R., Dosbolayev, M. K., & Ramazanov, T. S. (2016). Voids in Dusty Plasma of a Stratified DC Glow Discharge in Noble Gases. Contributions to Plasma Physics, 56(3-4), 234-239. doi:10.1002/ctpp.201500099

Wertheim, M. S. (1963). Exact Solution of the Percus-Yevick Integral Equation for Hard Spheres. Physical Review Letters, 10(8), 321-323. doi:10.1103/physrevlett.10.321

Vaulina, O. S. (2002). Criteria for Phase-Transitions in Yukawa Systems (Dusty Plasma). AIP Conference Proceedings. doi:10.1063/1.1527826

Davletov, A. E., Arkhipov, Y. V., & Tkachenko, I. M. (2016). Electric Charge of Dust Particles in a Plasma. Contributions to Plasma Physics, 56(3-4), 308-320. doi:10.1002/ctpp.201500111

Ott, T., Bonitz, M., Stanton, L. G., & Murillo, M. S. (2014). Coupling strength in Coulomb and Yukawa one-component plasmas. Physics of Plasmas, 21(11), 113704. doi:10.1063/1.4900625

Xie, B. S., & Yu, M. Y. (2000). Dust-acoustic waves in strongly coupled plasmas with variable dust charge. Physics of Plasmas, 7(8), 3137-3140. doi:10.1063/1.874219

Izvekova, Y. N., & Popel, S. I. (2016). Charged Dust Motion in Dust Devils on Earth and Mars. Contributions to Plasma Physics, 56(3-4), 263-269. doi:10.1002/ctpp.201500103

Walk, R. M., Snyder, J. A., Srinivasan, P., Kirsch, J., Diaz, S. O., Blanco, F. C., … Sandler, A. D. (2013). Cold atmospheric plasma for the ablative treatment of neuroblastoma. Journal of Pediatric Surgery, 48(1), 67-73. doi:10.1016/j.jpedsurg.2012.10.020

Kundrapu, M., & Keidar, M. (2012). Numerical simulation of carbon arc discharge for nanoparticle synthesis. Physics of Plasmas, 19(7), 073510. doi:10.1063/1.4737153

Lado, F. (1982). A local thermodynamic criterion for the reference-hypernetted chain equation. Physics Letters A, 89(4), 196-198. doi:10.1016/0375-9601(82)90207-9

Arkhipov, Y. V., Baimbetov, F. B., & Davletov, A. E. (2005). Ionization equilibrium and equation of state of partially ionized hydrogen plasmas: Pseudopotential approach in chemical picture. Physics of Plasmas, 12(8), 082701. doi:10.1063/1.1993062

Murillo, M. S. (1998). Static local field correction description of acoustic waves in strongly coupling dusty plasmas. Physics of Plasmas, 5(9), 3116-3121. doi:10.1063/1.873037

Arkhipov, Y. V., Baimbetov, F. B., & Davletov, A. E. (2003). Pseudopotential theory of a partially ionized hydrogen plasma. Contributions to Plasma Physics, 43(56), 258-260. doi:10.1002/ctpp.200310021

Ivlev, A. V., & Morfill, G. (2000). Acoustic modes in a collisional dusty plasma: Effect of the charge variation. Physics of Plasmas, 7(4), 1094-1102. doi:10.1063/1.873917

Tang, X.-Z., & Luca Delzanno, G. (2014). Orbital-motion-limited theory of dust charging and plasma response. Physics of Plasmas, 21(12), 123708. doi:10.1063/1.4904404

Kaw, P. K., & Sen, A. (1998). Low frequency modes in strongly coupled dusty plasmas. Physics of Plasmas, 5(10), 3552-3559. doi:10.1063/1.873073

Bonitz, M., Henning, C., & Block, D. (2010). Complex plasmas: a laboratory for strong correlations. Reports on Progress in Physics, 73(6), 066501. doi:10.1088/0034-4885/73/6/066501

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem