- -

Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

Show full item record

Mcdonald, A.; Jones, B.; Nygren, D.; Adams, C.; Álvarez-Puerta, V.; Azevedo, C.; Benlloch-Rodríguez, J.... (2018). Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging. Physical Review Letters. 120(13):1-6. https://doi.org/10.1103/PhysRevLett.120.132504

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145123

Files in this item

Item Metadata

Title: Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging
Author: McDonald, A.D. Jones, B.J.P. Nygren, D.R. Adams, C. Álvarez-Puerta, Vicente Azevedo, C.D.R. Benlloch-Rodríguez, J.M. Borges, F.I.G.M. Botas, A. Cárcel García, Sara Carrión Burguete, José Vicente Cebrian, S. Conde, C.A.N. Diaz, J. Esteve Bosch, Raul Herrero Bosch, Vicente Mora Mas, Francisco José Toledo Alarcón, José Francisco
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Issued date:
Abstract:
[EN] A new method to tag the barium daughter in the double-beta decay of Xe-136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++) resolution at a transparent ...[+]
Subjects: Masses
Copyrigths: Reserva de todos los derechos
Source:
Physical Review Letters. (issn: 0031-9007 )
DOI: 10.1103/PhysRevLett.120.132504
Publisher:
American Physical Society
Publisher version: https://doi.org/10.1103/PhysRevLett.120.132504
Project ID:
info:eu-repo/grantAgreement/EC/FP7/339787/EU/Towards the NEXT generation of bb0nu experimets/
...[+]
info:eu-repo/grantAgreement/EC/FP7/339787/EU/Towards the NEXT generation of bb0nu experimets/
info:eu-repo/grantAgreement/DOE//DE-AC02-07CH11359/
info:eu-repo/grantAgreement/DOE//DE-FG02-13ER42020/
info:eu-repo/grantAgreement/FCT/5876-PPCDTI/103860/PT/Participation in the international collaboration "NEXT-Neutrino Experiment with a Xenon TPC" aiming the direct detection of the neutrinoless double beta decay/
info:eu-repo/grantAgreement/DOE//DE-SC0017721/
info:eu-repo/grantAgreement/MINECO//SEV-2014-0398/ES/INSTITUTO DE FISICA CORPUSCULAR (IFIC)/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F120/
info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-4-R/ES/CONSTRUCCION, VALIDACION Y OPERACION DE LA ELECTRONICA DEL EXPERIMENTO NEXT/
[-]
Thanks:
NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under Advanced Grant No. 339787-NEXT, the Ministerio de Economia y Competitividad of Spain under ...[+]
Type: Artículo

References

Chang, D., & Mohapatra, R. N. (1985). On a mechanism for small neutrino masses. Physical Review D, 32(5), 1248-1249. doi:10.1103/physrevd.32.1248

Minkowski, P. (1977). μ→eγ at a rate of one out of 109 muon decays? Physics Letters B, 67(4), 421-428. doi:10.1016/0370-2693(77)90435-x

Mohapatra, R. N., & Senjanović, G. (1981). Neutrino masses and mixings in gauge models with spontaneous parity violation. Physical Review D, 23(1), 165-180. doi:10.1103/physrevd.23.165 [+]
Chang, D., & Mohapatra, R. N. (1985). On a mechanism for small neutrino masses. Physical Review D, 32(5), 1248-1249. doi:10.1103/physrevd.32.1248

Minkowski, P. (1977). μ→eγ at a rate of one out of 109 muon decays? Physics Letters B, 67(4), 421-428. doi:10.1016/0370-2693(77)90435-x

Mohapatra, R. N., & Senjanović, G. (1981). Neutrino masses and mixings in gauge models with spontaneous parity violation. Physical Review D, 23(1), 165-180. doi:10.1103/physrevd.23.165

Fukugita, M., & Yanagida, T. (1986). Barygenesis without grand unification. Physics Letters B, 174(1), 45-47. doi:10.1016/0370-2693(86)91126-3

Ostrovskiy, I., & O’Sullivan, K. (2016). Search for neutrinoless double beta decay. Modern Physics Letters A, 31(18), 1630017. doi:10.1142/s0217732316300172

Ostrovskiy, I., & O’Sullivan, K. (2016). Errata: «Search for neutrinoless double beta decay». Modern Physics Letters A, 31(23), 1692004. doi:10.1142/s0217732316920048

Dell’Oro, S., Marcocci, S., Viel, M., & Vissani, F. (2016). Neutrinoless Double Beta Decay: 2015 Review. Advances in High Energy Physics, 2016, 1-37. doi:10.1155/2016/2162659

Gómez-Cadenas, J. ., Martín-Albo, J., Sorel, M., Ferrario, P., Monrabal, F., Muñoz, J., … Poves, A. (2011). Sense and sensitivity of double beta decay experiments. Journal of Cosmology and Astroparticle Physics, 2011(06), 007-007. doi:10.1088/1475-7516/2011/06/007

Aseev, V. N., Belesev, A. I., Berlev, A. I., Geraskin, E. V., Golubev, A. A., Likhovid, N. A., … Zadorozhny, S. V. (2011). Upper limit on the electron antineutrino mass from the Troitsk experiment. Physical Review D, 84(11). doi:10.1103/physrevd.84.112003

Gonzalez-Garcia, M. C., Maltoni, M., & Schwetz, T. (2016). Global analyses of neutrino oscillation experiments. Nuclear Physics B, 908, 199-217. doi:10.1016/j.nuclphysb.2016.02.033

Álvarez, V., Borges, F. I. G. M., Cárcel, S., Carmona, J. M., Castel, J., Catalá, J. M., … Conde, C. A. N. (2012). NEXT-100 Technical Design Report (TDR). Executive summary. Journal of Instrumentation, 7(06), T06001-T06001. doi:10.1088/1748-0221/7/06/t06001

Auger, M., Auty, D. J., Barbeau, P. S., Beauchamp, E., Belov, V., Benitez-Medina, C., … Cleveland, B. (2012). Search for Neutrinoless Double-Beta Decay inXe136with EXO-200. Physical Review Letters, 109(3). doi:10.1103/physrevlett.109.032505

Moe, M. K. (1991). Detection of neutrinoless double-beta decay. Physical Review C, 44(3), R931-R934. doi:10.1103/physrevc.44.r931

Danilov, M., DeVoe, R., Dolgolenko, A., Giannini, G., Gratta, G., Picchi, P., … Zeldovich, O. (2000). Detection of very small neutrino masses in double-beta decay using laser tagging. Physics Letters B, 480(1-2), 12-18. doi:10.1016/s0370-2693(00)00404-4

Mong, B., Cook, S., Walton, T., Chambers, C., Craycraft, A., Benitez-Medina, C., … Auty, D. J. (2015). Spectroscopy of Ba andBa+deposits in solid xenon for barium tagging in nEXO. Physical Review A, 91(2). doi:10.1103/physreva.91.022505

Brunner, T., Fudenberg, D., Varentsov, V., Sabourov, A., Gratta, G., Dilling, J., … Albert, J. B. (2015). An RF-only ion-funnel for extraction from high-pressure gases. International Journal of Mass Spectrometry, 379, 110-120. doi:10.1016/j.ijms.2015.01.003

Flatt, B., Green, M., Wodin, J., DeVoe, R., Fierlinger, P., Gratta, G., … Weber, P. (2007). A linear RFQ ion trap for the Enriched Xenon Observatory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 578(2), 399-408. doi:10.1016/j.nima.2007.05.123

Sinclair, D., Rollin, E., Smith, J., Mommers, A., Ackeran, N., Aharmin, B., … Breidenbach, M. (2011). Prospects for Barium Tagging in Gaseous Xenon. Journal of Physics: Conference Series, 309, 012005. doi:10.1088/1742-6596/309/1/012005

Lu, Y., & Paige, M. F. (2007). An Ensemble and Single-molecule Fluorescence Spectroscopy Investigation of Calcium Green 1, a Calcium-ion Sensor. Journal of Fluorescence, 17(6), 739-748. doi:10.1007/s10895-007-0185-1

Álvarez, V., Borges, F. I. G. M., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Near-intrinsic energy resolution for 30–662keV gamma rays in a high pressure xenon electroluminescent TPC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 708, 101-114. doi:10.1016/j.nima.2012.12.123

Green, A. E. S. (1957). Single Electron Shakeoff Probability Following the Beta Decay of Krypton. Physical Review, 107(6), 1646-1650. doi:10.1103/physrev.107.1646

Albert, J. B., Auty, D. J., Barbeau, P. S., Beck, D., Belov, V., Breidenbach, M., … Chambers, C. (2015). Measurements of the ion fraction and mobility ofα−andβ-decay products in liquid xenon using the EXO-200 detector. Physical Review C, 92(4). doi:10.1103/physrevc.92.045504

Bolotnikov, A., & Ramsey, B. (1997). The spectroscopic properties of high-pressure xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 396(3), 360-370. doi:10.1016/s0168-9002(97)00784-5

Jones, B. J. P., McDonald, A. D., & Nygren, D. R. (2016). Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay. Journal of Instrumentation, 11(12), P12011-P12011. doi:10.1088/1748-0221/11/12/p12011

Arai, F., Ito, Y., Wada, M., Schury, P., Sonoda, T., & Mita, H. (2014). Investigation of the ion surfing transport method with a circular rf carpet. International Journal of Mass Spectrometry, 362, 56-58. doi:10.1016/j.ijms.2014.01.005

Burghardt, T. P. (2012). Measuring incidence angle for through-the-objective total internal reflection fluorescence microscopy. Journal of Biomedical Optics, 17(12), 126007. doi:10.1117/1.jbo.17.12.126007

Stemmer, A., Beck, M., & Fiolka, R. (2008). Widefield fluorescence microscopy with extended resolution. Histochemistry and Cell Biology, 130(5), 807-817. doi:10.1007/s00418-008-0506-8

Fish, K. N. (2009). Total Internal Reflection Fluorescence (TIRF) Microscopy. Current Protocols in Cytometry, 50(1). doi:10.1002/0471142956.cy1218s50

Habuchi, S., Ando, R., Dedecker, P., Verheijen, W., Mizuno, H., Miyawaki, A., & Hofkens, J. (2005). From The Cover: Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proceedings of the National Academy of Sciences, 102(27), 9511-9516. doi:10.1073/pnas.0500489102

Thomas, D., Tovey, S. C., Collins, T. J., Bootman, M. D., Berridge, M. J., & Lipp, P. (2000). A comparison of fluorescent Ca2+indicator properties and their use in measuring elementary and global Ca2+signals. Cell Calcium, 28(4), 213-223. doi:10.1054/ceca.2000.0152

Thompson, R. E., Larson, D. R., & Webb, W. W. (2002). Precise Nanometer Localization Analysis for Individual Fluorescent Probes. Biophysical Journal, 82(5), 2775-2783. doi:10.1016/s0006-3495(02)75618-x

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record