- -

Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

Show simple item record

Files in this item

dc.contributor.author McDonald, A.D. es_ES
dc.contributor.author Jones, B.J.P. es_ES
dc.contributor.author Nygren, D.R. es_ES
dc.contributor.author Adams, C. es_ES
dc.contributor.author Álvarez-Puerta, Vicente es_ES
dc.contributor.author Azevedo, C.D.R. es_ES
dc.contributor.author Benlloch-Rodríguez, J.M. es_ES
dc.contributor.author Borges, F.I.G.M. es_ES
dc.contributor.author Botas, A. es_ES
dc.contributor.author Cárcel García, Sara es_ES
dc.contributor.author Carrión Burguete, José Vicente es_ES
dc.contributor.author Cebrian, S. es_ES
dc.contributor.author Conde, C.A.N. es_ES
dc.contributor.author Diaz, J. es_ES
dc.contributor.author Esteve Bosch, Raul es_ES
dc.contributor.author Herrero Bosch, Vicente es_ES
dc.contributor.author Mora Mas, Francisco José es_ES
dc.contributor.author Toledo Alarcón, José Francisco es_ES
dc.date.accessioned 2020-06-03T05:53:26Z
dc.date.available 2020-06-03T05:53:26Z
dc.date.issued 2018-03-26 es_ES
dc.identifier.issn 0031-9007 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145123
dc.description.abstract [EN] A new method to tag the barium daughter in the double-beta decay of Xe-136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (similar to 2 nm), and detected with a statistical significance of 12.9 sigma over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers. es_ES
dc.description.sponsorship NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under Advanced Grant No. 339787-NEXT, the Ministerio de Economia y Competitividad of Spain under Grants No. FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398, the Generalitat Valenciana (GVA) of Spain under Grant No. PROMETEO/2016/120, the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008, the U.S. Department of Energy under Contracts No. DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and No. DE-FG02-13ER42020 (Texas A&M) and No. DE-SC0017721 (University of Texas at Arlington), and the University of Texas at Arlington. es_ES
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Masses es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevLett.120.132504 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/339787/EU/Towards the NEXT generation of bb0nu experimets/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC02-07CH11359/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-FG02-13ER42020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/103860/PT/Participation in the international collaboration "NEXT-Neutrino Experiment with a Xenon TPC" aiming the direct detection of the neutrinoless double beta decay/
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-SC0017721/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2014-0398/ES/INSTITUTO DE FISICA CORPUSCULAR (IFIC)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F120/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-4-R/ES/CONSTRUCCION, VALIDACION Y OPERACION DE LA ELECTRONICA DEL EXPERIMENTO NEXT/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Mcdonald, A.; Jones, B.; Nygren, D.; Adams, C.; Álvarez-Puerta, V.; Azevedo, C.; Benlloch-Rodríguez, J.... (2018). Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging. Physical Review Letters. 120(13):1-6. https://doi.org/10.1103/PhysRevLett.120.132504 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1103/PhysRevLett.120.132504 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 6 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 120 es_ES
dc.description.issue 13 es_ES
dc.identifier.pmid 29694208 es_ES
dc.relation.pasarela S\374751 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder University of Texas at Arlington es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal
dc.description.references Chang, D., & Mohapatra, R. N. (1985). On a mechanism for small neutrino masses. Physical Review D, 32(5), 1248-1249. doi:10.1103/physrevd.32.1248 es_ES
dc.description.references Minkowski, P. (1977). μ→eγ at a rate of one out of 109 muon decays? Physics Letters B, 67(4), 421-428. doi:10.1016/0370-2693(77)90435-x es_ES
dc.description.references Mohapatra, R. N., & Senjanović, G. (1981). Neutrino masses and mixings in gauge models with spontaneous parity violation. Physical Review D, 23(1), 165-180. doi:10.1103/physrevd.23.165 es_ES
dc.description.references Fukugita, M., & Yanagida, T. (1986). Barygenesis without grand unification. Physics Letters B, 174(1), 45-47. doi:10.1016/0370-2693(86)91126-3 es_ES
dc.description.references Ostrovskiy, I., & O’Sullivan, K. (2016). Search for neutrinoless double beta decay. Modern Physics Letters A, 31(18), 1630017. doi:10.1142/s0217732316300172 es_ES
dc.description.references Ostrovskiy, I., & O’Sullivan, K. (2016). Errata: «Search for neutrinoless double beta decay». Modern Physics Letters A, 31(23), 1692004. doi:10.1142/s0217732316920048 es_ES
dc.description.references Dell’Oro, S., Marcocci, S., Viel, M., & Vissani, F. (2016). Neutrinoless Double Beta Decay: 2015 Review. Advances in High Energy Physics, 2016, 1-37. doi:10.1155/2016/2162659 es_ES
dc.description.references Gómez-Cadenas, J. ., Martín-Albo, J., Sorel, M., Ferrario, P., Monrabal, F., Muñoz, J., … Poves, A. (2011). Sense and sensitivity of double beta decay experiments. Journal of Cosmology and Astroparticle Physics, 2011(06), 007-007. doi:10.1088/1475-7516/2011/06/007 es_ES
dc.description.references Aseev, V. N., Belesev, A. I., Berlev, A. I., Geraskin, E. V., Golubev, A. A., Likhovid, N. A., … Zadorozhny, S. V. (2011). Upper limit on the electron antineutrino mass from the Troitsk experiment. Physical Review D, 84(11). doi:10.1103/physrevd.84.112003 es_ES
dc.description.references Gonzalez-Garcia, M. C., Maltoni, M., & Schwetz, T. (2016). Global analyses of neutrino oscillation experiments. Nuclear Physics B, 908, 199-217. doi:10.1016/j.nuclphysb.2016.02.033 es_ES
dc.description.references Álvarez, V., Borges, F. I. G. M., Cárcel, S., Carmona, J. M., Castel, J., Catalá, J. M., … Conde, C. A. N. (2012). NEXT-100 Technical Design Report (TDR). Executive summary. Journal of Instrumentation, 7(06), T06001-T06001. doi:10.1088/1748-0221/7/06/t06001 es_ES
dc.description.references Auger, M., Auty, D. J., Barbeau, P. S., Beauchamp, E., Belov, V., Benitez-Medina, C., … Cleveland, B. (2012). Search for Neutrinoless Double-Beta Decay inXe136with EXO-200. Physical Review Letters, 109(3). doi:10.1103/physrevlett.109.032505 es_ES
dc.description.references Moe, M. K. (1991). Detection of neutrinoless double-beta decay. Physical Review C, 44(3), R931-R934. doi:10.1103/physrevc.44.r931 es_ES
dc.description.references Danilov, M., DeVoe, R., Dolgolenko, A., Giannini, G., Gratta, G., Picchi, P., … Zeldovich, O. (2000). Detection of very small neutrino masses in double-beta decay using laser tagging. Physics Letters B, 480(1-2), 12-18. doi:10.1016/s0370-2693(00)00404-4 es_ES
dc.description.references Mong, B., Cook, S., Walton, T., Chambers, C., Craycraft, A., Benitez-Medina, C., … Auty, D. J. (2015). Spectroscopy of Ba andBa+deposits in solid xenon for barium tagging in nEXO. Physical Review A, 91(2). doi:10.1103/physreva.91.022505 es_ES
dc.description.references Brunner, T., Fudenberg, D., Varentsov, V., Sabourov, A., Gratta, G., Dilling, J., … Albert, J. B. (2015). An RF-only ion-funnel for extraction from high-pressure gases. International Journal of Mass Spectrometry, 379, 110-120. doi:10.1016/j.ijms.2015.01.003 es_ES
dc.description.references Flatt, B., Green, M., Wodin, J., DeVoe, R., Fierlinger, P., Gratta, G., … Weber, P. (2007). A linear RFQ ion trap for the Enriched Xenon Observatory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 578(2), 399-408. doi:10.1016/j.nima.2007.05.123 es_ES
dc.description.references Sinclair, D., Rollin, E., Smith, J., Mommers, A., Ackeran, N., Aharmin, B., … Breidenbach, M. (2011). Prospects for Barium Tagging in Gaseous Xenon. Journal of Physics: Conference Series, 309, 012005. doi:10.1088/1742-6596/309/1/012005 es_ES
dc.description.references Lu, Y., & Paige, M. F. (2007). An Ensemble and Single-molecule Fluorescence Spectroscopy Investigation of Calcium Green 1, a Calcium-ion Sensor. Journal of Fluorescence, 17(6), 739-748. doi:10.1007/s10895-007-0185-1 es_ES
dc.description.references Álvarez, V., Borges, F. I. G. M., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Near-intrinsic energy resolution for 30–662keV gamma rays in a high pressure xenon electroluminescent TPC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 708, 101-114. doi:10.1016/j.nima.2012.12.123 es_ES
dc.description.references Green, A. E. S. (1957). Single Electron Shakeoff Probability Following the Beta Decay of Krypton. Physical Review, 107(6), 1646-1650. doi:10.1103/physrev.107.1646 es_ES
dc.description.references Albert, J. B., Auty, D. J., Barbeau, P. S., Beck, D., Belov, V., Breidenbach, M., … Chambers, C. (2015). Measurements of the ion fraction and mobility ofα−andβ-decay products in liquid xenon using the EXO-200 detector. Physical Review C, 92(4). doi:10.1103/physrevc.92.045504 es_ES
dc.description.references Bolotnikov, A., & Ramsey, B. (1997). The spectroscopic properties of high-pressure xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 396(3), 360-370. doi:10.1016/s0168-9002(97)00784-5 es_ES
dc.description.references Jones, B. J. P., McDonald, A. D., & Nygren, D. R. (2016). Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay. Journal of Instrumentation, 11(12), P12011-P12011. doi:10.1088/1748-0221/11/12/p12011 es_ES
dc.description.references Arai, F., Ito, Y., Wada, M., Schury, P., Sonoda, T., & Mita, H. (2014). Investigation of the ion surfing transport method with a circular rf carpet. International Journal of Mass Spectrometry, 362, 56-58. doi:10.1016/j.ijms.2014.01.005 es_ES
dc.description.references Burghardt, T. P. (2012). Measuring incidence angle for through-the-objective total internal reflection fluorescence microscopy. Journal of Biomedical Optics, 17(12), 126007. doi:10.1117/1.jbo.17.12.126007 es_ES
dc.description.references Stemmer, A., Beck, M., & Fiolka, R. (2008). Widefield fluorescence microscopy with extended resolution. Histochemistry and Cell Biology, 130(5), 807-817. doi:10.1007/s00418-008-0506-8 es_ES
dc.description.references Fish, K. N. (2009). Total Internal Reflection Fluorescence (TIRF) Microscopy. Current Protocols in Cytometry, 50(1). doi:10.1002/0471142956.cy1218s50 es_ES
dc.description.references Habuchi, S., Ando, R., Dedecker, P., Verheijen, W., Mizuno, H., Miyawaki, A., & Hofkens, J. (2005). From The Cover: Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proceedings of the National Academy of Sciences, 102(27), 9511-9516. doi:10.1073/pnas.0500489102 es_ES
dc.description.references Thomas, D., Tovey, S. C., Collins, T. J., Bootman, M. D., Berridge, M. J., & Lipp, P. (2000). A comparison of fluorescent Ca2+indicator properties and their use in measuring elementary and global Ca2+signals. Cell Calcium, 28(4), 213-223. doi:10.1054/ceca.2000.0152 es_ES
dc.description.references Thompson, R. E., Larson, D. R., & Webb, W. W. (2002). Precise Nanometer Localization Analysis for Individual Fluorescent Probes. Biophysical Journal, 82(5), 2775-2783. doi:10.1016/s0006-3495(02)75618-x es_ES


This item appears in the following Collection(s)

Show simple item record