- -

Functional Ag-Exchanged Zeolites as Biocide Agents

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Functional Ag-Exchanged Zeolites as Biocide Agents

Show full item record

Cerrillo, JL.; Palomares Gimeno, AE.; Rey Garcia, F.; Valencia Valencia, S.; Pérez-Gago, MB.; Villamón-Pérez, D.; Palou-Valls, L. (2018). Functional Ag-Exchanged Zeolites as Biocide Agents. ChemistrySelect. 3(17):4676-4682. https://doi.org/10.1002/slct.201800432

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145194

Files in this item

Item Metadata

Title: Functional Ag-Exchanged Zeolites as Biocide Agents
Author: Cerrillo, José Luis Palomares Gimeno, Antonio Eduardo Rey Garcia, Fernando Valencia Valencia, Susana Pérez-Gago, María B. Villamón-Pérez, Diana Palou-Valls, Lluis
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Issued date:
Abstract:
[EN] Materials based on silver are used for controlling different pathogenic microorganisms. However, the influence of the silver carrier in the biocidal activity of the material has been scarcely reported. The present ...[+]
Subjects: Bactericides , Biocidal materials , Fungicides , Silver , Zeolites
Copyrigths: Reserva de todos los derechos
Source:
ChemistrySelect. (eissn: 2365-6549 )
DOI: 10.1002/slct.201800432
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/slct.201800432
Project ID:
info:eu-repo/grantAgreement/MINECO//SVP-2014-068600/ES/SVP-2014-068600/
info:eu-repo/grantAgreement/MINECO//MAT2015-71842-P/ES/SINTESIS Y CARACTERIZACION AVANZADA DE NUEVOS MATERIALES ZEOLITICOS Y APLICACIONES EN ADSORCION, MEDIOAMBIENTE Y EN LA CONSERVACION DE ALIMENTOS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Description: "This is the peer reviewed version of the following article: Cerrillo, José Luis, Antonio Eduardo Palomares, Fernando Rey, Susana Valencia, María Bernardita Pérez-Gago, Diana Villamón, and Lluís Palou. 2018. Functional Ag-Exchanged Zeolites as Biocide Agents. ChemistrySelect 3 (17). Wiley: 4676 82. doi:10.1002/slct.201800432, which has been published in final form at https://doi.org/10.1002/slct.201800432. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Thanks:
The authors thank the Spanish Ministry of Economy and Competitiveness through MAT-2015-71842-P and SEV-2016-0683 for the financial support and J.L. Cerrillo wish to thank Spanish Ministry of Economy and Competitiveness for ...[+]
Type: Artículo

References

Dai, D., Prussin, A. J., Marr, L. C., Vikesland, P. J., Edwards, M. A., & Pruden, A. (2017). Factors Shaping the Human Exposome in the Built Environment: Opportunities for Engineering Control. Environmental Science & Technology, 51(14), 7759-7774. doi:10.1021/acs.est.7b01097

Klevens, R. M., Edwards, J. R., Richards, C. L., Horan, T. C., Gaynes, R. P., Pollock, D. A., & Cardo, D. M. (2007). Estimating Health Care-Associated Infections and Deaths in U.S. Hospitals, 2002. Public Health Reports, 122(2), 160-166. doi:10.1177/003335490712200205

Busolo, M. A., Fernandez, P., Ocio, M. J., & Lagaron, J. M. (2010). Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Additives & Contaminants: Part A, 27(11), 1617-1626. doi:10.1080/19440049.2010.506601 [+]
Dai, D., Prussin, A. J., Marr, L. C., Vikesland, P. J., Edwards, M. A., & Pruden, A. (2017). Factors Shaping the Human Exposome in the Built Environment: Opportunities for Engineering Control. Environmental Science & Technology, 51(14), 7759-7774. doi:10.1021/acs.est.7b01097

Klevens, R. M., Edwards, J. R., Richards, C. L., Horan, T. C., Gaynes, R. P., Pollock, D. A., & Cardo, D. M. (2007). Estimating Health Care-Associated Infections and Deaths in U.S. Hospitals, 2002. Public Health Reports, 122(2), 160-166. doi:10.1177/003335490712200205

Busolo, M. A., Fernandez, P., Ocio, M. J., & Lagaron, J. M. (2010). Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Additives & Contaminants: Part A, 27(11), 1617-1626. doi:10.1080/19440049.2010.506601

Monteiro, D. R., Gorup, L. F., Takamiya, A. S., Ruvollo-Filho, A. C., Camargo, E. R. de, & Barbosa, D. B. (2009). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 34(2), 103-110. doi:10.1016/j.ijantimicag.2009.01.017

Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74(7), 2171-2178. doi:10.1128/aem.02001-07

Sánchez, M. J., Mauricio, J. E., Paredes, A. R., Gamero, P., & Cortés, D. (2017). Antimicrobial properties of ZSM-5 type zeolite functionalized with silver. Materials Letters, 191, 65-68. doi:10.1016/j.matlet.2017.01.039

Lalueza, P., Monzón, M., Arruebo, M., & Santamaría, J. (2011). Bactericidal effects of different silver-containing materials. Materials Research Bulletin, 46(11), 2070-2076. doi:10.1016/j.materresbull.2011.06.041

Haile, T., Nakhla, G., Zhu, J., Zhang, H., & Shugg, J. (2010). Mechanistic study of the bactericidal action of silver-loaded chabasite on Acidithiobacillus thiooxidans. Microporous and Mesoporous Materials, 127(1-2), 32-40. doi:10.1016/j.micromeso.2009.06.030

Saint-Cricq, P., Kamimura, Y., Itabashi, K., Sugawara-Narutaki, A., Shimojima, A., & Okubo, T. (2012). Antibacterial Activity of Silver-Loaded «Green Zeolites». European Journal of Inorganic Chemistry, 2012(21), 3398-3402. doi:10.1002/ejic.201200476

Matsumura, Y., Yoshikata, K., Kunisaki, S., & Tsuchido, T. (2003). Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate. Applied and Environmental Microbiology, 69(7), 4278-4281. doi:10.1128/aem.69.7.4278-4281.2003

Inglezakis, V. J. (2005). The concept of «capacity» in zeolite ion-exchange systems. Journal of Colloid and Interface Science, 281(1), 68-79. doi:10.1016/j.jcis.2004.08.082

Fonseca, A. M., & Neves, I. C. (2013). Study of silver species stabilized in different microporous zeolites. Microporous and Mesoporous Materials, 181, 83-87. doi:10.1016/j.micromeso.2013.07.018

Amorim, R., Vilaça, N., Martinho, O., Reis, R. M., Sardo, M., Rocha, J., … Neves, I. C. (2012). Zeolite Structures Loading with an Anticancer Compound As Drug Delivery Systems. The Journal of Physical Chemistry C, 116(48), 25642-25650. doi:10.1021/jp3093868

Neves, I. C., Cunha, C., Pereira, M. R., Pereira, M. F. R., & Fonseca, A. M. (2010). Optical Properties of Nanostructures Obtained by Encapsulation of Cation Chromophores in Y Zeolite. The Journal of Physical Chemistry C, 114(24), 10719-10724. doi:10.1021/jp101001a

Góra-Marek, K., Tarach, K. A., Piwowarska, Z., Łaniecki, M., & Chmielarz, L. (2016). Ag-loaded zeolites Y and USY as catalysts for selective ammonia oxidation. Catalysis Science & Technology, 6(6), 1651-1660. doi:10.1039/c5cy01446h

Demirci, S., Ustaoğlu, Z., Yılmazer, G. A., Sahin, F., & Baç, N. (2013). Antimicrobial Properties of Zeolite-X and Zeolite-A Ion-Exchanged with Silver, Copper, and Zinc Against a Broad Range of Microorganisms. Applied Biochemistry and Biotechnology, 172(3), 1652-1662. doi:10.1007/s12010-013-0647-7

Tekin, R., & Bac, N. (2016). Antimicrobial behavior of ion-exchanged zeolite X containing fragrance. Microporous and Mesoporous Materials, 234, 55-60. doi:10.1016/j.micromeso.2016.07.006

Ferreira, L., Fonseca, A. M., Botelho, G., Aguiar, C. A.-, & Neves, I. C. (2012). Antimicrobial activity of faujasite zeolites doped with silver. Microporous and Mesoporous Materials, 160, 126-132. doi:10.1016/j.micromeso.2012.05.006

Lalueza, P., Monzón, M., Arruebo, M., & Santamaria, J. (2011). Antibacterial action of Ag-containing MFI zeolite at low Ag loadings. Chem. Commun., 47(2), 680-682. doi:10.1039/c0cc03905e

Kawahara, K., Tsuruda, K., Morishita, M., & Uchida, M. (2000). Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dental Materials, 16(6), 452-455. doi:10.1016/s0109-5641(00)00050-6

Bedi, R. S., Cai, R., O’Neill, C., Beving, D. E., Foster, S., Guthrie, S., … Yan, Y. (2012). Hydrophilic and antimicrobial Ag-exchanged zeolite a coatings: A year-long durability study and preliminary evidence for their general microbiocidal efficacy to bacteria, fungus and yeast. Microporous and Mesoporous Materials, 151, 352-357. doi:10.1016/j.micromeso.2011.10.012

Chiericatti, C., Basílico, J. C., Basílico, M. L. Z., & Zamaro, J. M. (2014). Antifungal activity of silver ions exchanged in mordenite. Microporous and Mesoporous Materials, 188, 118-125. doi:10.1016/j.micromeso.2013.12.033

Cerrillo, J. L., Palomares, A. E., Rey, F., Valencia, S., Palou, L., & Pérez-Gago, M. B. (2017). Ag-zeolites as fungicidal material: Control of citrus green mold caused by Penicillium digitatum. Microporous and Mesoporous Materials, 254, 69-76. doi:10.1016/j.micromeso.2017.03.036

Mayoral, A., Carey, T., Anderson, P. A., & Diaz, I. (2013). Atomic resolution analysis of porous solids: A detailed study of silver ion-exchanged zeolite A. Microporous and Mesoporous Materials, 166, 117-122. doi:10.1016/j.micromeso.2012.04.033

Kaur, B., Srivastava, R., Satpati, B., Kondepudi, K. K., & Bishnoi, M. (2015). Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid. Colloids and Surfaces B: Biointerfaces, 135, 201-208. doi:10.1016/j.colsurfb.2015.07.068

Kwakye-Awuah, B., Williams, C., Kenward, M. A., & Radecka, I. (2008). Antimicrobial action and efficiency of silver-loaded zeolite X. Journal of Applied Microbiology, 104(5), 1516-1524. doi:10.1111/j.1365-2672.2007.03673.x

Sun, T., & Seff, K. (1994). Silver Clusters and Chemistry in Zeolites. Chemical Reviews, 94(4), 857-870. doi:10.1021/cr00028a001

Sayah, E., Brouri, D., & Massiani, P. (2013). A comparative in situ TEM and UV–visible spectroscopic study of the thermal evolution of Ag species dispersed on Al2O3 and NaX zeolite supports. Catalysis Today, 218-219, 10-17. doi:10.1016/j.cattod.2013.06.003

Satsuma, A., Shibata, J., Shimizu, K., & Hattori, T. (2005). Ag Clusters as Active Species for HC-SCR Over Ag-Zeolites. Catalysis Surveys from Asia, 9(2), 75-85. doi:10.1007/s10563-005-5993-1

Hutson, N. D., Reisner, B. A., Yang, R. T., & Toby, B. H. (2000). Silver Ion-Exchanged Zeolites Y, X, and Low-Silica X:  Observations of Thermally Induced Cation/Cluster Migration and the Resulting Effects on the Equilibrium Adsorption of Nitrogen. Chemistry of Materials, 12(10), 3020-3031. doi:10.1021/cm000294n

Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions onEscherichia coli andStaphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662-668. doi:10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3

Compendium of Citrus Diseases 2000

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record