Mostrar el registro sencillo del ítem
dc.contributor.author | Cerrillo, José Luis | es_ES |
dc.contributor.author | Palomares Gimeno, Antonio Eduardo | es_ES |
dc.contributor.author | Rey Garcia, Fernando | es_ES |
dc.contributor.author | Valencia Valencia, Susana | es_ES |
dc.contributor.author | Pérez-Gago, María B. | es_ES |
dc.contributor.author | Villamón-Pérez, Diana | es_ES |
dc.contributor.author | Palou-Valls, Lluis | es_ES |
dc.date.accessioned | 2020-06-04T06:30:19Z | |
dc.date.available | 2020-06-04T06:30:19Z | |
dc.date.issued | 2018-05-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145194 | |
dc.description | "This is the peer reviewed version of the following article: Cerrillo, José Luis, Antonio Eduardo Palomares, Fernando Rey, Susana Valencia, María Bernardita Pérez-Gago, Diana Villamón, and Lluís Palou. 2018. Functional Ag-Exchanged Zeolites as Biocide Agents. ChemistrySelect 3 (17). Wiley: 4676 82. doi:10.1002/slct.201800432, which has been published in final form at https://doi.org/10.1002/slct.201800432. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." | es_ES |
dc.description.abstract | [EN] Materials based on silver are used for controlling different pathogenic microorganisms. However, the influence of the silver carrier in the biocidal activity of the material has been scarcely reported. The present research is focused on studying the influence of zeolite properties on the biocidal activity of silver-exchanged zeolites, acting as reservoirs of silver species. The biocidal action of Ag-Faujasite (Ag-FAU) and Ag-Linde Type A (Ag-LTA) zeolites, containing different silver contents, is studied against different types of bacteria and fungi. Importantly, zeolite structure is found to be a significant parameter for controlling the antibacterial activity of Ag-exchanged zeolites. The results show that Ag-FAU presents a higher activity than Ag-LTA, because the topology of FAU combined with its highest Si/Al ratio favors the formation and release of silver species with important biocidal activity. Some insights on the bactericidal mechanism of Ag-zeolites are envisaged by means of high resolution transmission electron microscopy, showing the multi-targeted biocidal action of Ag species released from zeolites. Besides, it is shown that Ag-zeolites are more active against bacteria than fungi. Antifungal activity is highly dependent on the fungi species and the structure of the zeolite is not as determinant as it is for the antibacterial activity. | es_ES |
dc.description.sponsorship | The authors thank the Spanish Ministry of Economy and Competitiveness through MAT-2015-71842-P and SEV-2016-0683 for the financial support and J.L. Cerrillo wish to thank Spanish Ministry of Economy and Competitiveness for the Severo Ochoa PhD fellowship (SVP-2014-068600). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | ChemistrySelect | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bactericides | es_ES |
dc.subject | Biocidal materials | es_ES |
dc.subject | Fungicides | es_ES |
dc.subject | Silver | es_ES |
dc.subject | Zeolites | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Functional Ag-Exchanged Zeolites as Biocide Agents | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/slct.201800432 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SVP-2014-068600/ES/SVP-2014-068600/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-71842-P/ES/SINTESIS Y CARACTERIZACION AVANZADA DE NUEVOS MATERIALES ZEOLITICOS Y APLICACIONES EN ADSORCION, MEDIOAMBIENTE Y EN LA CONSERVACION DE ALIMENTOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Cerrillo, JL.; Palomares Gimeno, AE.; Rey Garcia, F.; Valencia Valencia, S.; Pérez-Gago, MB.; Villamón-Pérez, D.; Palou-Valls, L. (2018). Functional Ag-Exchanged Zeolites as Biocide Agents. ChemistrySelect. 3(17):4676-4682. https://doi.org/10.1002/slct.201800432 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/slct.201800432 | es_ES |
dc.description.upvformatpinicio | 4676 | es_ES |
dc.description.upvformatpfin | 4682 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.description.issue | 17 | es_ES |
dc.identifier.eissn | 2365-6549 | es_ES |
dc.relation.pasarela | S\369882 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Dai, D., Prussin, A. J., Marr, L. C., Vikesland, P. J., Edwards, M. A., & Pruden, A. (2017). Factors Shaping the Human Exposome in the Built Environment: Opportunities for Engineering Control. Environmental Science & Technology, 51(14), 7759-7774. doi:10.1021/acs.est.7b01097 | es_ES |
dc.description.references | Klevens, R. M., Edwards, J. R., Richards, C. L., Horan, T. C., Gaynes, R. P., Pollock, D. A., & Cardo, D. M. (2007). Estimating Health Care-Associated Infections and Deaths in U.S. Hospitals, 2002. Public Health Reports, 122(2), 160-166. doi:10.1177/003335490712200205 | es_ES |
dc.description.references | Busolo, M. A., Fernandez, P., Ocio, M. J., & Lagaron, J. M. (2010). Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Additives & Contaminants: Part A, 27(11), 1617-1626. doi:10.1080/19440049.2010.506601 | es_ES |
dc.description.references | Monteiro, D. R., Gorup, L. F., Takamiya, A. S., Ruvollo-Filho, A. C., Camargo, E. R. de, & Barbosa, D. B. (2009). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 34(2), 103-110. doi:10.1016/j.ijantimicag.2009.01.017 | es_ES |
dc.description.references | Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74(7), 2171-2178. doi:10.1128/aem.02001-07 | es_ES |
dc.description.references | Sánchez, M. J., Mauricio, J. E., Paredes, A. R., Gamero, P., & Cortés, D. (2017). Antimicrobial properties of ZSM-5 type zeolite functionalized with silver. Materials Letters, 191, 65-68. doi:10.1016/j.matlet.2017.01.039 | es_ES |
dc.description.references | Lalueza, P., Monzón, M., Arruebo, M., & Santamaría, J. (2011). Bactericidal effects of different silver-containing materials. Materials Research Bulletin, 46(11), 2070-2076. doi:10.1016/j.materresbull.2011.06.041 | es_ES |
dc.description.references | Haile, T., Nakhla, G., Zhu, J., Zhang, H., & Shugg, J. (2010). Mechanistic study of the bactericidal action of silver-loaded chabasite on Acidithiobacillus thiooxidans. Microporous and Mesoporous Materials, 127(1-2), 32-40. doi:10.1016/j.micromeso.2009.06.030 | es_ES |
dc.description.references | Saint-Cricq, P., Kamimura, Y., Itabashi, K., Sugawara-Narutaki, A., Shimojima, A., & Okubo, T. (2012). Antibacterial Activity of Silver-Loaded «Green Zeolites». European Journal of Inorganic Chemistry, 2012(21), 3398-3402. doi:10.1002/ejic.201200476 | es_ES |
dc.description.references | Matsumura, Y., Yoshikata, K., Kunisaki, S., & Tsuchido, T. (2003). Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate. Applied and Environmental Microbiology, 69(7), 4278-4281. doi:10.1128/aem.69.7.4278-4281.2003 | es_ES |
dc.description.references | Inglezakis, V. J. (2005). The concept of «capacity» in zeolite ion-exchange systems. Journal of Colloid and Interface Science, 281(1), 68-79. doi:10.1016/j.jcis.2004.08.082 | es_ES |
dc.description.references | Fonseca, A. M., & Neves, I. C. (2013). Study of silver species stabilized in different microporous zeolites. Microporous and Mesoporous Materials, 181, 83-87. doi:10.1016/j.micromeso.2013.07.018 | es_ES |
dc.description.references | Amorim, R., Vilaça, N., Martinho, O., Reis, R. M., Sardo, M., Rocha, J., … Neves, I. C. (2012). Zeolite Structures Loading with an Anticancer Compound As Drug Delivery Systems. The Journal of Physical Chemistry C, 116(48), 25642-25650. doi:10.1021/jp3093868 | es_ES |
dc.description.references | Neves, I. C., Cunha, C., Pereira, M. R., Pereira, M. F. R., & Fonseca, A. M. (2010). Optical Properties of Nanostructures Obtained by Encapsulation of Cation Chromophores in Y Zeolite. The Journal of Physical Chemistry C, 114(24), 10719-10724. doi:10.1021/jp101001a | es_ES |
dc.description.references | Góra-Marek, K., Tarach, K. A., Piwowarska, Z., Łaniecki, M., & Chmielarz, L. (2016). Ag-loaded zeolites Y and USY as catalysts for selective ammonia oxidation. Catalysis Science & Technology, 6(6), 1651-1660. doi:10.1039/c5cy01446h | es_ES |
dc.description.references | Demirci, S., Ustaoğlu, Z., Yılmazer, G. A., Sahin, F., & Baç, N. (2013). Antimicrobial Properties of Zeolite-X and Zeolite-A Ion-Exchanged with Silver, Copper, and Zinc Against a Broad Range of Microorganisms. Applied Biochemistry and Biotechnology, 172(3), 1652-1662. doi:10.1007/s12010-013-0647-7 | es_ES |
dc.description.references | Tekin, R., & Bac, N. (2016). Antimicrobial behavior of ion-exchanged zeolite X containing fragrance. Microporous and Mesoporous Materials, 234, 55-60. doi:10.1016/j.micromeso.2016.07.006 | es_ES |
dc.description.references | Ferreira, L., Fonseca, A. M., Botelho, G., Aguiar, C. A.-, & Neves, I. C. (2012). Antimicrobial activity of faujasite zeolites doped with silver. Microporous and Mesoporous Materials, 160, 126-132. doi:10.1016/j.micromeso.2012.05.006 | es_ES |
dc.description.references | Lalueza, P., Monzón, M., Arruebo, M., & Santamaria, J. (2011). Antibacterial action of Ag-containing MFI zeolite at low Ag loadings. Chem. Commun., 47(2), 680-682. doi:10.1039/c0cc03905e | es_ES |
dc.description.references | Kawahara, K., Tsuruda, K., Morishita, M., & Uchida, M. (2000). Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dental Materials, 16(6), 452-455. doi:10.1016/s0109-5641(00)00050-6 | es_ES |
dc.description.references | Bedi, R. S., Cai, R., O’Neill, C., Beving, D. E., Foster, S., Guthrie, S., … Yan, Y. (2012). Hydrophilic and antimicrobial Ag-exchanged zeolite a coatings: A year-long durability study and preliminary evidence for their general microbiocidal efficacy to bacteria, fungus and yeast. Microporous and Mesoporous Materials, 151, 352-357. doi:10.1016/j.micromeso.2011.10.012 | es_ES |
dc.description.references | Chiericatti, C., Basílico, J. C., Basílico, M. L. Z., & Zamaro, J. M. (2014). Antifungal activity of silver ions exchanged in mordenite. Microporous and Mesoporous Materials, 188, 118-125. doi:10.1016/j.micromeso.2013.12.033 | es_ES |
dc.description.references | Cerrillo, J. L., Palomares, A. E., Rey, F., Valencia, S., Palou, L., & Pérez-Gago, M. B. (2017). Ag-zeolites as fungicidal material: Control of citrus green mold caused by Penicillium digitatum. Microporous and Mesoporous Materials, 254, 69-76. doi:10.1016/j.micromeso.2017.03.036 | es_ES |
dc.description.references | Mayoral, A., Carey, T., Anderson, P. A., & Diaz, I. (2013). Atomic resolution analysis of porous solids: A detailed study of silver ion-exchanged zeolite A. Microporous and Mesoporous Materials, 166, 117-122. doi:10.1016/j.micromeso.2012.04.033 | es_ES |
dc.description.references | Kaur, B., Srivastava, R., Satpati, B., Kondepudi, K. K., & Bishnoi, M. (2015). Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid. Colloids and Surfaces B: Biointerfaces, 135, 201-208. doi:10.1016/j.colsurfb.2015.07.068 | es_ES |
dc.description.references | Kwakye-Awuah, B., Williams, C., Kenward, M. A., & Radecka, I. (2008). Antimicrobial action and efficiency of silver-loaded zeolite X. Journal of Applied Microbiology, 104(5), 1516-1524. doi:10.1111/j.1365-2672.2007.03673.x | es_ES |
dc.description.references | Sun, T., & Seff, K. (1994). Silver Clusters and Chemistry in Zeolites. Chemical Reviews, 94(4), 857-870. doi:10.1021/cr00028a001 | es_ES |
dc.description.references | Sayah, E., Brouri, D., & Massiani, P. (2013). A comparative in situ TEM and UV–visible spectroscopic study of the thermal evolution of Ag species dispersed on Al2O3 and NaX zeolite supports. Catalysis Today, 218-219, 10-17. doi:10.1016/j.cattod.2013.06.003 | es_ES |
dc.description.references | Satsuma, A., Shibata, J., Shimizu, K., & Hattori, T. (2005). Ag Clusters as Active Species for HC-SCR Over Ag-Zeolites. Catalysis Surveys from Asia, 9(2), 75-85. doi:10.1007/s10563-005-5993-1 | es_ES |
dc.description.references | Hutson, N. D., Reisner, B. A., Yang, R. T., & Toby, B. H. (2000). Silver Ion-Exchanged Zeolites Y, X, and Low-Silica X: Observations of Thermally Induced Cation/Cluster Migration and the Resulting Effects on the Equilibrium Adsorption of Nitrogen. Chemistry of Materials, 12(10), 3020-3031. doi:10.1021/cm000294n | es_ES |
dc.description.references | Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions onEscherichia coli andStaphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662-668. doi:10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3 | es_ES |
dc.description.references | Compendium of Citrus Diseases 2000 | es_ES |