- -

Functional Ag-Exchanged Zeolites as Biocide Agents

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Functional Ag-Exchanged Zeolites as Biocide Agents

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cerrillo, José Luis es_ES
dc.contributor.author Palomares Gimeno, Antonio Eduardo es_ES
dc.contributor.author Rey Garcia, Fernando es_ES
dc.contributor.author Valencia Valencia, Susana es_ES
dc.contributor.author Pérez-Gago, María B. es_ES
dc.contributor.author Villamón-Pérez, Diana es_ES
dc.contributor.author Palou-Valls, Lluis es_ES
dc.date.accessioned 2020-06-04T06:30:19Z
dc.date.available 2020-06-04T06:30:19Z
dc.date.issued 2018-05-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145194
dc.description "This is the peer reviewed version of the following article: Cerrillo, José Luis, Antonio Eduardo Palomares, Fernando Rey, Susana Valencia, María Bernardita Pérez-Gago, Diana Villamón, and Lluís Palou. 2018. Functional Ag-Exchanged Zeolites as Biocide Agents. ChemistrySelect 3 (17). Wiley: 4676 82. doi:10.1002/slct.201800432, which has been published in final form at https://doi.org/10.1002/slct.201800432. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] Materials based on silver are used for controlling different pathogenic microorganisms. However, the influence of the silver carrier in the biocidal activity of the material has been scarcely reported. The present research is focused on studying the influence of zeolite properties on the biocidal activity of silver-exchanged zeolites, acting as reservoirs of silver species. The biocidal action of Ag-Faujasite (Ag-FAU) and Ag-Linde Type A (Ag-LTA) zeolites, containing different silver contents, is studied against different types of bacteria and fungi. Importantly, zeolite structure is found to be a significant parameter for controlling the antibacterial activity of Ag-exchanged zeolites. The results show that Ag-FAU presents a higher activity than Ag-LTA, because the topology of FAU combined with its highest Si/Al ratio favors the formation and release of silver species with important biocidal activity. Some insights on the bactericidal mechanism of Ag-zeolites are envisaged by means of high resolution transmission electron microscopy, showing the multi-targeted biocidal action of Ag species released from zeolites. Besides, it is shown that Ag-zeolites are more active against bacteria than fungi. Antifungal activity is highly dependent on the fungi species and the structure of the zeolite is not as determinant as it is for the antibacterial activity. es_ES
dc.description.sponsorship The authors thank the Spanish Ministry of Economy and Competitiveness through MAT-2015-71842-P and SEV-2016-0683 for the financial support and J.L. Cerrillo wish to thank Spanish Ministry of Economy and Competitiveness for the Severo Ochoa PhD fellowship (SVP-2014-068600). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof ChemistrySelect es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bactericides es_ES
dc.subject Biocidal materials es_ES
dc.subject Fungicides es_ES
dc.subject Silver es_ES
dc.subject Zeolites es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Functional Ag-Exchanged Zeolites as Biocide Agents es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/slct.201800432 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SVP-2014-068600/ES/SVP-2014-068600/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71842-P/ES/SINTESIS Y CARACTERIZACION AVANZADA DE NUEVOS MATERIALES ZEOLITICOS Y APLICACIONES EN ADSORCION, MEDIOAMBIENTE Y EN LA CONSERVACION DE ALIMENTOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Cerrillo, JL.; Palomares Gimeno, AE.; Rey Garcia, F.; Valencia Valencia, S.; Pérez-Gago, MB.; Villamón-Pérez, D.; Palou-Valls, L. (2018). Functional Ag-Exchanged Zeolites as Biocide Agents. ChemistrySelect. 3(17):4676-4682. https://doi.org/10.1002/slct.201800432 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/slct.201800432 es_ES
dc.description.upvformatpinicio 4676 es_ES
dc.description.upvformatpfin 4682 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 17 es_ES
dc.identifier.eissn 2365-6549 es_ES
dc.relation.pasarela S\369882 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Dai, D., Prussin, A. J., Marr, L. C., Vikesland, P. J., Edwards, M. A., & Pruden, A. (2017). Factors Shaping the Human Exposome in the Built Environment: Opportunities for Engineering Control. Environmental Science & Technology, 51(14), 7759-7774. doi:10.1021/acs.est.7b01097 es_ES
dc.description.references Klevens, R. M., Edwards, J. R., Richards, C. L., Horan, T. C., Gaynes, R. P., Pollock, D. A., & Cardo, D. M. (2007). Estimating Health Care-Associated Infections and Deaths in U.S. Hospitals, 2002. Public Health Reports, 122(2), 160-166. doi:10.1177/003335490712200205 es_ES
dc.description.references Busolo, M. A., Fernandez, P., Ocio, M. J., & Lagaron, J. M. (2010). Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Additives & Contaminants: Part A, 27(11), 1617-1626. doi:10.1080/19440049.2010.506601 es_ES
dc.description.references Monteiro, D. R., Gorup, L. F., Takamiya, A. S., Ruvollo-Filho, A. C., Camargo, E. R. de, & Barbosa, D. B. (2009). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 34(2), 103-110. doi:10.1016/j.ijantimicag.2009.01.017 es_ES
dc.description.references Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74(7), 2171-2178. doi:10.1128/aem.02001-07 es_ES
dc.description.references Sánchez, M. J., Mauricio, J. E., Paredes, A. R., Gamero, P., & Cortés, D. (2017). Antimicrobial properties of ZSM-5 type zeolite functionalized with silver. Materials Letters, 191, 65-68. doi:10.1016/j.matlet.2017.01.039 es_ES
dc.description.references Lalueza, P., Monzón, M., Arruebo, M., & Santamaría, J. (2011). Bactericidal effects of different silver-containing materials. Materials Research Bulletin, 46(11), 2070-2076. doi:10.1016/j.materresbull.2011.06.041 es_ES
dc.description.references Haile, T., Nakhla, G., Zhu, J., Zhang, H., & Shugg, J. (2010). Mechanistic study of the bactericidal action of silver-loaded chabasite on Acidithiobacillus thiooxidans. Microporous and Mesoporous Materials, 127(1-2), 32-40. doi:10.1016/j.micromeso.2009.06.030 es_ES
dc.description.references Saint-Cricq, P., Kamimura, Y., Itabashi, K., Sugawara-Narutaki, A., Shimojima, A., & Okubo, T. (2012). Antibacterial Activity of Silver-Loaded «Green Zeolites». European Journal of Inorganic Chemistry, 2012(21), 3398-3402. doi:10.1002/ejic.201200476 es_ES
dc.description.references Matsumura, Y., Yoshikata, K., Kunisaki, S., & Tsuchido, T. (2003). Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate. Applied and Environmental Microbiology, 69(7), 4278-4281. doi:10.1128/aem.69.7.4278-4281.2003 es_ES
dc.description.references Inglezakis, V. J. (2005). The concept of «capacity» in zeolite ion-exchange systems. Journal of Colloid and Interface Science, 281(1), 68-79. doi:10.1016/j.jcis.2004.08.082 es_ES
dc.description.references Fonseca, A. M., & Neves, I. C. (2013). Study of silver species stabilized in different microporous zeolites. Microporous and Mesoporous Materials, 181, 83-87. doi:10.1016/j.micromeso.2013.07.018 es_ES
dc.description.references Amorim, R., Vilaça, N., Martinho, O., Reis, R. M., Sardo, M., Rocha, J., … Neves, I. C. (2012). Zeolite Structures Loading with an Anticancer Compound As Drug Delivery Systems. The Journal of Physical Chemistry C, 116(48), 25642-25650. doi:10.1021/jp3093868 es_ES
dc.description.references Neves, I. C., Cunha, C., Pereira, M. R., Pereira, M. F. R., & Fonseca, A. M. (2010). Optical Properties of Nanostructures Obtained by Encapsulation of Cation Chromophores in Y Zeolite. The Journal of Physical Chemistry C, 114(24), 10719-10724. doi:10.1021/jp101001a es_ES
dc.description.references Góra-Marek, K., Tarach, K. A., Piwowarska, Z., Łaniecki, M., & Chmielarz, L. (2016). Ag-loaded zeolites Y and USY as catalysts for selective ammonia oxidation. Catalysis Science & Technology, 6(6), 1651-1660. doi:10.1039/c5cy01446h es_ES
dc.description.references Demirci, S., Ustaoğlu, Z., Yılmazer, G. A., Sahin, F., & Baç, N. (2013). Antimicrobial Properties of Zeolite-X and Zeolite-A Ion-Exchanged with Silver, Copper, and Zinc Against a Broad Range of Microorganisms. Applied Biochemistry and Biotechnology, 172(3), 1652-1662. doi:10.1007/s12010-013-0647-7 es_ES
dc.description.references Tekin, R., & Bac, N. (2016). Antimicrobial behavior of ion-exchanged zeolite X containing fragrance. Microporous and Mesoporous Materials, 234, 55-60. doi:10.1016/j.micromeso.2016.07.006 es_ES
dc.description.references Ferreira, L., Fonseca, A. M., Botelho, G., Aguiar, C. A.-, & Neves, I. C. (2012). Antimicrobial activity of faujasite zeolites doped with silver. Microporous and Mesoporous Materials, 160, 126-132. doi:10.1016/j.micromeso.2012.05.006 es_ES
dc.description.references Lalueza, P., Monzón, M., Arruebo, M., & Santamaria, J. (2011). Antibacterial action of Ag-containing MFI zeolite at low Ag loadings. Chem. Commun., 47(2), 680-682. doi:10.1039/c0cc03905e es_ES
dc.description.references Kawahara, K., Tsuruda, K., Morishita, M., & Uchida, M. (2000). Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dental Materials, 16(6), 452-455. doi:10.1016/s0109-5641(00)00050-6 es_ES
dc.description.references Bedi, R. S., Cai, R., O’Neill, C., Beving, D. E., Foster, S., Guthrie, S., … Yan, Y. (2012). Hydrophilic and antimicrobial Ag-exchanged zeolite a coatings: A year-long durability study and preliminary evidence for their general microbiocidal efficacy to bacteria, fungus and yeast. Microporous and Mesoporous Materials, 151, 352-357. doi:10.1016/j.micromeso.2011.10.012 es_ES
dc.description.references Chiericatti, C., Basílico, J. C., Basílico, M. L. Z., & Zamaro, J. M. (2014). Antifungal activity of silver ions exchanged in mordenite. Microporous and Mesoporous Materials, 188, 118-125. doi:10.1016/j.micromeso.2013.12.033 es_ES
dc.description.references Cerrillo, J. L., Palomares, A. E., Rey, F., Valencia, S., Palou, L., & Pérez-Gago, M. B. (2017). Ag-zeolites as fungicidal material: Control of citrus green mold caused by Penicillium digitatum. Microporous and Mesoporous Materials, 254, 69-76. doi:10.1016/j.micromeso.2017.03.036 es_ES
dc.description.references Mayoral, A., Carey, T., Anderson, P. A., & Diaz, I. (2013). Atomic resolution analysis of porous solids: A detailed study of silver ion-exchanged zeolite A. Microporous and Mesoporous Materials, 166, 117-122. doi:10.1016/j.micromeso.2012.04.033 es_ES
dc.description.references Kaur, B., Srivastava, R., Satpati, B., Kondepudi, K. K., & Bishnoi, M. (2015). Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid. Colloids and Surfaces B: Biointerfaces, 135, 201-208. doi:10.1016/j.colsurfb.2015.07.068 es_ES
dc.description.references Kwakye-Awuah, B., Williams, C., Kenward, M. A., & Radecka, I. (2008). Antimicrobial action and efficiency of silver-loaded zeolite X. Journal of Applied Microbiology, 104(5), 1516-1524. doi:10.1111/j.1365-2672.2007.03673.x es_ES
dc.description.references Sun, T., & Seff, K. (1994). Silver Clusters and Chemistry in Zeolites. Chemical Reviews, 94(4), 857-870. doi:10.1021/cr00028a001 es_ES
dc.description.references Sayah, E., Brouri, D., & Massiani, P. (2013). A comparative in situ TEM and UV–visible spectroscopic study of the thermal evolution of Ag species dispersed on Al2O3 and NaX zeolite supports. Catalysis Today, 218-219, 10-17. doi:10.1016/j.cattod.2013.06.003 es_ES
dc.description.references Satsuma, A., Shibata, J., Shimizu, K., & Hattori, T. (2005). Ag Clusters as Active Species for HC-SCR Over Ag-Zeolites. Catalysis Surveys from Asia, 9(2), 75-85. doi:10.1007/s10563-005-5993-1 es_ES
dc.description.references Hutson, N. D., Reisner, B. A., Yang, R. T., & Toby, B. H. (2000). Silver Ion-Exchanged Zeolites Y, X, and Low-Silica X:  Observations of Thermally Induced Cation/Cluster Migration and the Resulting Effects on the Equilibrium Adsorption of Nitrogen. Chemistry of Materials, 12(10), 3020-3031. doi:10.1021/cm000294n es_ES
dc.description.references Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions onEscherichia coli andStaphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662-668. doi:10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3 es_ES
dc.description.references Compendium of Citrus Diseases 2000 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem