- -

Spin Selectivity in Chiral Linked Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spin Selectivity in Chiral Linked Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ageeva, A.A. es_ES
dc.contributor.author Khramtsova, E.A. es_ES
dc.contributor.author Magin, I.M. es_ES
dc.contributor.author Richkov, D.A. es_ES
dc.contributor.author Purtov, P.A. es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Leshina, T.V. es_ES
dc.date.accessioned 2020-06-04T06:30:41Z
dc.date.available 2020-06-04T06:30:41Z
dc.date.issued 2018-03-12 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145199
dc.description "This is the peer reviewed version of the following article: Ageeva, Aleksandra A., Ekaterina A. Khramtsova, Ilya M. Magin, Denis A. Rychkov, Peter A. Purtov, Miguel A. Miranda, and Tatyana V. Leshina. 2018. "Spin Selectivity in Chiral Linked Systems." Chemistry - A European Journal 24 (15). Wiley: 3882-92. doi:10.1002/chem.201705863, which has been published in final form at https://doi.org/10.1002/chem.201705863. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] This work has shown spin selectivity in electron transfer (ET) of diastereomers of (R,S)-naproxen-(S)-N-methylpyrrolidine and (R,S)-naproxen-(S)-tryptophan dyads. Photoinduced ET in these dyads is interesting because of the still unexplained phenomenon of stereoselectivity in the drug activity of enantiomers. The chemically induced dynamic nuclear polarization (CIDNP) enhancement coefficients of (R,S)-diastereomers are double those of the (S,S)-analogue. These facts are also interesting because spin effects are among the most sensitive, even to small changes in spin and molecular dynamics of paramagnetic particles. Therefore, CIDNP reflects the difference in magnetoresonance parameters (hyperfine interaction constants (HFIs), g-factor difference) and lifetimes of the paramagnetic forms of (R,S)- and (S,S)-diastereomers. The difference in HFI values for diastereomers has been confirmed by a comparison of CIDNP experimental enhancement coefficients with those calculated. Additionally, the dependence of the CIDNP enhancement coefficients on diastereomer concentration has been observed for the naproxen-N-methylpyrrolidine dyad. This has been explained by the participation of ET in homo-(R,S-R,S or S,S-S,S) and hetero-(R,S-S,S) dimers of dyads. In this case, the effectivity of ET, and consequently, CIDNP, is supposed to be different for (R,S)- and (S,S)-homodimers, heterodimers, and monomers. The possibility of dyad dimer formation has been demonstrated by using high-resolution X-ray and NMR spectroscopy techniques. es_ES
dc.description.sponsorship The work was supported by the Russian Foundation for Fundamental Research (14-03-00192). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chirality es_ES
dc.subject Diastereomers es_ES
dc.subject Electron transfer es_ES
dc.subject Hydrogen bonds es_ES
dc.subject Spin selectivity es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Spin Selectivity in Chiral Linked Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201705863 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RFBR//14-03-00192/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Ageeva, A.; Khramtsova, E.; Magin, I.; Richkov, D.; Purtov, P.; Miranda Alonso, MÁ.; Leshina, T. (2018). Spin Selectivity in Chiral Linked Systems. Chemistry - A European Journal. 24(15):3882-3892. https://doi.org/10.1002/chem.201705863 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201705863 es_ES
dc.description.upvformatpinicio 3882 es_ES
dc.description.upvformatpfin 3892 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 15 es_ES
dc.identifier.pmid 29314394 es_ES
dc.relation.pasarela S\387094 es_ES
dc.contributor.funder Russian Foundation for Basic Research es_ES
dc.description.references Lin, G.-Q., Zhang, J.-G., & Cheng, J.-F. (2011). Overview of Chirality and Chiral Drugs. Chiral Drugs, 3-28. doi:10.1002/9781118075647.ch1 es_ES
dc.description.references Lin, G.-Q., You, Q.-D., & Cheng, J.-F. (Eds.). (2011). Chiral Drugs. doi:10.1002/9781118075647 es_ES
dc.description.references Krasulova, K., Siller, M., Holas, O., Dvorak, Z., & Anzenbacher, P. (2015). Enantiospecific effects of chiral drugs on cytochrome P450 inhibitionin vitro. Xenobiotica, 46(4), 315-324. doi:10.3109/00498254.2015.1076086 es_ES
dc.description.references Shen, Q., Wang, L., Zhou, H., Jiang, H., Yu, L., & Zeng, S. (2013). Stereoselective binding of chiral drugs to plasma proteins. Acta Pharmacologica Sinica, 34(8), 998-1006. doi:10.1038/aps.2013.78 es_ES
dc.description.references Duggan, K. C., Hermanson, D. J., Musee, J., Prusakiewicz, J. J., Scheib, J. L., Carter, B. D., … Marnett, L. J. (2011). (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. Nature Chemical Biology, 7(11), 803-809. doi:10.1038/nchembio.663 es_ES
dc.description.references Jiménez, M. C., Pischel, U., & Miranda, M. A. (2007). Photoinduced processes in naproxen-based chiral dyads. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 8(3), 128-142. doi:10.1016/j.jphotochemrev.2007.10.001 es_ES
dc.description.references Khramtsova, E. A., Sosnovsky, D. V., Ageeva, A. A., Nuin, E., Marin, M. L., Purtov, P. A., … Leshina, T. V. (2016). Impact of chirality on the photoinduced charge transfer in linked systems containing naproxen enantiomers. Physical Chemistry Chemical Physics, 18(18), 12733-12741. doi:10.1039/c5cp07305g es_ES
dc.description.references Khramtsova, E. A., Ageeva, A. A., Stepanov, A. A., Plyusnin, V. F., & Leshina, T. V. (2017). Photoinduced Electron Transfer in Dyads with (R)-/(S)-Naproxen and (S)-Tryptophan. Zeitschrift für Physikalische Chemie, 231(3). doi:10.1515/zpch-2016-0842 es_ES
dc.description.references Abad, S., Pischel, U., & Miranda, M. A. (2005). Intramolecular electron transfer in diastereomeric naphthalene–amine dyads: a fluorescence and laser flash photolysis study. Photochem. Photobiol. Sci., 4(1), 69-74. doi:10.1039/b409729g es_ES
dc.description.references Levkin, P. A., Kokorin, A. I., Schurig, V., & Kostyanovsky, R. G. (2006). Solid-state ESR differentiation between racemate versus enantiomer. Chirality, 18(4), 232-238. doi:10.1002/chir.20242 es_ES
dc.description.references Khlestkin, V. K., Glasachev, Y. I., Kokorin, A. I., & Kostyanovsky, R. G. (2004). ESR study of stereochemistry in chiral nitroxide radical crystals. Mendeleev Communications, 14(6), 318-320. doi:10.1070/mc2004v014n06abeh002055 es_ES
dc.description.references Mäurer, M., & Stegmann, H. B. (1990). Chiral recognition of diastereomeric esters and acetals by EPR and NMR investigations. Chemische Berichte, 123(8), 1679-1685. doi:10.1002/cber.19901230817 es_ES
dc.description.references Kreilick, R. W., Becher, J., & Ullman, E. F. (1969). Stable free radicals. V. Electron spin resonance studies of nitronylnitroxide radicals with asymmetric centers. Journal of the American Chemical Society, 91(18), 5121-5124. doi:10.1021/ja01046a032 es_ES
dc.description.references Schuler, P., Schaber, F.-M., Stegmann, H. B., & Janzen, E. (1999). Recognition of chirality in nitroxides using EPR and ENDOR spectroscopy. Magnetic Resonance in Chemistry, 37(11), 805-813. doi:10.1002/(sici)1097-458x(199911)37:11<805::aid-mrc543>3.0.co;2-k es_ES
dc.description.references Doktorov, A. B., Mikhailov, S. A., & Purtov, P. A. (1992). Theory of geminate recombination of radical pairs with instantaneously changing spin-Hamiltonian. I. General theory and kinematic approximation. Chemical Physics, 160(2), 223-237. doi:10.1016/0301-0104(92)80124-e es_ES
dc.description.references Magin, I. M., Purtov, P. A., Kruppa, A. I., & Leshina, T. V. (2005). Peculiarities of Magnetic and Spin Effects in a Biradical/Stable Radical Complex (Three-Spin System). Theory and Comparison with Experiment. The Journal of Physical Chemistry A, 109(33), 7396-7401. doi:10.1021/jp051115y es_ES
dc.description.references Yin, P., Zhang, Z.-M., Lv, H., Li, T., Haso, F., Hu, L., … Liu, T. (2015). Chiral recognition and selection during the self-assembly process of protein-mimic macroanions. Nature Communications, 6(1). doi:10.1038/ncomms7475 es_ES
dc.description.references Soai, K., Kawasaki, T., & Matsumoto, A. (2014). The Origins of Homochirality Examined by Using Asymmetric Autocatalysis. The Chemical Record, 14(1), 70-83. doi:10.1002/tcr.201300028 es_ES
dc.description.references Frank, F. C. (1953). On spontaneous asymmetric synthesis. Biochimica et Biophysica Acta, 11, 459-463. doi:10.1016/0006-3002(53)90082-1 es_ES
dc.description.references Hegstrom, R. A., & Kondepudi, D. K. (1996). Influence of static magnetic fields on chirally autocatalytic radical-pair reactions. Chemical Physics Letters, 253(3-4), 322-326. doi:10.1016/0009-2614(96)00248-5 es_ES
dc.description.references Ishida, Y., & Aida, T. (2002). Homochiral Supramolecular Polymerization of an «S»-Shaped Chiral Monomer:  Translation of Optical Purity into Molecular Weight Distribution. Journal of the American Chemical Society, 124(47), 14017-14019. doi:10.1021/ja028403h es_ES
dc.description.references Sato, K., Itoh, Y., & Aida, T. (2014). Homochiral supramolecular polymerization of bowl-shaped chiral macrocycles in solution. Chem. Sci., 5(1), 136-140. doi:10.1039/c3sc52449c es_ES
dc.description.references Dubinets, N. O., Safonov, A. A., & Bagaturyants, A. A. (2016). Structures and Binding Energies of the Naphthalene Dimer in Its Ground and Excited States. The Journal of Physical Chemistry A, 120(17), 2779-2782. doi:10.1021/acs.jpca.6b03761 es_ES
dc.description.references ‘Excimer’ fluorescence VII. Spectral studies of naphthalene and its derivatives. (1965). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 284(1399), 551-565. doi:10.1098/rspa.1965.0080 es_ES
dc.description.references Kerr, H. E., Softley, L. K., Suresh, K., Hodgkinson, P., & Evans, I. R. (2017). Structure and physicochemical characterization of a naproxen–picolinamide cocrystal. Acta Crystallographica Section C Structural Chemistry, 73(3), 168-175. doi:10.1107/s2053229616011980 es_ES
dc.description.references Saprygina, N. N., Morozova, O. B., Gritsan, N. P., Fedorova, O. S., & Yurkovskaya, A. V. (2011). 1H CIDNP study of the kinetics and mechanism of the reversible photoinduced oxidation of tryptophyl-tryptophan dipeptide in aqueous solutions. Russian Chemical Bulletin, 60(12), 2579-2587. doi:10.1007/s11172-011-0396-0 es_ES
dc.description.references Schwarz, W., Dangel, K. M., Bargon, J., & Jones, G. (1982). CIDNP studies of photoinitiated electron-transfer reactions. Sensitized isomerization of an electron-acceptor norbornadiene. Journal of the American Chemical Society, 104(21), 5686-5689. doi:10.1021/ja00385a022 es_ES
dc.description.references Gilbert, B. C., Larkin, J. P., & Norman, R. O. C. (1972). Electron spin resonance studies. Part XXXIV. The use of the aci-anion from nitromethane as a spin trap for organic radicals in aqueous solution. Journal of the Chemical Society, Perkin Transactions 2, (9), 1272. doi:10.1039/p29720001272 es_ES
dc.description.references Mäurer, M., Stegmann, H. B., Hiller, W., & Müller, B. (1992). Stereoelectronic and Steric Effects in the Synthesis and Recognition of Diastereomeric Ethers by NMR and EPR Spectroscopy. Chemische Berichte, 125(4), 857-865. doi:10.1002/cber.19921250417 es_ES
dc.description.references Pejov, L. (2001). A gradient-corrected density functional study of indole self-association through N–H⋯π hydrogen bonding. Chemical Physics Letters, 339(3-4), 269-278. doi:10.1016/s0009-2614(01)00341-4 es_ES
dc.description.references Muñoz, M. ., Ferrero, R., Carmona, C., & Balón, M. (2004). Hydrogen bonding interactions between indole and benzenoid-π-bases. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(1-2), 193-200. doi:10.1016/s1386-1425(03)00206-3 es_ES
dc.description.references Hatton, J. V., & Richards, R. E. (1962). Solvent effects in N.M.R. spectra of amide solutions. Molecular Physics, 5(2), 139-152. doi:10.1080/00268976200100141 es_ES
dc.description.references Vayá, I., Andreu, I., Jiménez, M. C., & Miranda, M. A. (2014). Photooxygenation mechanisms in naproxen–amino acid linked systems. Photochem. Photobiol. Sci., 13(2), 224-230. doi:10.1039/c3pp50252j es_ES
dc.description.references Gavezzotti, A. (1994). Are Crystal Structures Predictable? Accounts of Chemical Research, 27(10), 309-314. doi:10.1021/ar00046a004 es_ES
dc.description.references Gavezzotti, A., & Filippini, G. (1994). Geometry of the Intermolecular X-H.cntdot..cntdot..cntdot.Y (X, Y = N, O) Hydrogen Bond and the Calibration of Empirical Hydrogen-Bond Potentials. The Journal of Physical Chemistry, 98(18), 4831-4837. doi:10.1021/j100069a010 es_ES
dc.description.references Closs, G. L., & Miller, R. J. (1979). Laser flash photolysis with NMR detection. Microsecond time-resolved CIDNP: separation of geminate and random-phase processes. Journal of the American Chemical Society, 101(6), 1639-1641. doi:10.1021/ja00500a068 es_ES
dc.description.references Goez, M. (1992). Pseudo steady-state photo-CIDNP measurements. Chemical Physics Letters, 188(5-6), 451-456. doi:10.1016/0009-2614(92)80847-5 es_ES
dc.description.references Rychkov, D. A., Arkhipov, S. G., & Boldyreva, E. V. (2014). Simple and efficient modifications of well known techniques for reliable growth of high-quality crystals of small bioorganic molecules. Journal of Applied Crystallography, 47(4), 1435-1442. doi:10.1107/s1600576714011273 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem