- -

Spin Selectivity in Chiral Linked Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spin Selectivity in Chiral Linked Systems

Mostrar el registro completo del ítem

Ageeva, A.; Khramtsova, E.; Magin, I.; Richkov, D.; Purtov, P.; Miranda Alonso, MÁ.; Leshina, T. (2018). Spin Selectivity in Chiral Linked Systems. Chemistry - A European Journal. 24(15):3882-3892. https://doi.org/10.1002/chem.201705863

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145199

Ficheros en el ítem

Metadatos del ítem

Título: Spin Selectivity in Chiral Linked Systems
Autor: Ageeva, A.A. Khramtsova, E.A. Magin, I.M. Richkov, D.A. Purtov, P.A. Miranda Alonso, Miguel Ángel Leshina, T.V.
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] This work has shown spin selectivity in electron transfer (ET) of diastereomers of (R,S)-naproxen-(S)-N-methylpyrrolidine and (R,S)-naproxen-(S)-tryptophan dyads. Photoinduced ET in these dyads is interesting because ...[+]
Palabras clave: Chirality , Diastereomers , Electron transfer , Hydrogen bonds , Spin selectivity
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.201705863
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/chem.201705863
Código del Proyecto:
info:eu-repo/grantAgreement/RFBR//14-03-00192/
Descripción: "This is the peer reviewed version of the following article: Ageeva, Aleksandra A., Ekaterina A. Khramtsova, Ilya M. Magin, Denis A. Rychkov, Peter A. Purtov, Miguel A. Miranda, and Tatyana V. Leshina. 2018. "Spin Selectivity in Chiral Linked Systems." Chemistry - A European Journal 24 (15). Wiley: 3882-92. doi:10.1002/chem.201705863, which has been published in final form at https://doi.org/10.1002/chem.201705863. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
The work was supported by the Russian Foundation for Fundamental Research (14-03-00192).
Tipo: Artículo

References

Lin, G.-Q., Zhang, J.-G., & Cheng, J.-F. (2011). Overview of Chirality and Chiral Drugs. Chiral Drugs, 3-28. doi:10.1002/9781118075647.ch1

Lin, G.-Q., You, Q.-D., & Cheng, J.-F. (Eds.). (2011). Chiral Drugs. doi:10.1002/9781118075647

Krasulova, K., Siller, M., Holas, O., Dvorak, Z., & Anzenbacher, P. (2015). Enantiospecific effects of chiral drugs on cytochrome P450 inhibitionin vitro. Xenobiotica, 46(4), 315-324. doi:10.3109/00498254.2015.1076086 [+]
Lin, G.-Q., Zhang, J.-G., & Cheng, J.-F. (2011). Overview of Chirality and Chiral Drugs. Chiral Drugs, 3-28. doi:10.1002/9781118075647.ch1

Lin, G.-Q., You, Q.-D., & Cheng, J.-F. (Eds.). (2011). Chiral Drugs. doi:10.1002/9781118075647

Krasulova, K., Siller, M., Holas, O., Dvorak, Z., & Anzenbacher, P. (2015). Enantiospecific effects of chiral drugs on cytochrome P450 inhibitionin vitro. Xenobiotica, 46(4), 315-324. doi:10.3109/00498254.2015.1076086

Shen, Q., Wang, L., Zhou, H., Jiang, H., Yu, L., & Zeng, S. (2013). Stereoselective binding of chiral drugs to plasma proteins. Acta Pharmacologica Sinica, 34(8), 998-1006. doi:10.1038/aps.2013.78

Duggan, K. C., Hermanson, D. J., Musee, J., Prusakiewicz, J. J., Scheib, J. L., Carter, B. D., … Marnett, L. J. (2011). (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. Nature Chemical Biology, 7(11), 803-809. doi:10.1038/nchembio.663

Jiménez, M. C., Pischel, U., & Miranda, M. A. (2007). Photoinduced processes in naproxen-based chiral dyads. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 8(3), 128-142. doi:10.1016/j.jphotochemrev.2007.10.001

Khramtsova, E. A., Sosnovsky, D. V., Ageeva, A. A., Nuin, E., Marin, M. L., Purtov, P. A., … Leshina, T. V. (2016). Impact of chirality on the photoinduced charge transfer in linked systems containing naproxen enantiomers. Physical Chemistry Chemical Physics, 18(18), 12733-12741. doi:10.1039/c5cp07305g

Khramtsova, E. A., Ageeva, A. A., Stepanov, A. A., Plyusnin, V. F., & Leshina, T. V. (2017). Photoinduced Electron Transfer in Dyads with (R)-/(S)-Naproxen and (S)-Tryptophan. Zeitschrift für Physikalische Chemie, 231(3). doi:10.1515/zpch-2016-0842

Abad, S., Pischel, U., & Miranda, M. A. (2005). Intramolecular electron transfer in diastereomeric naphthalene–amine dyads: a fluorescence and laser flash photolysis study. Photochem. Photobiol. Sci., 4(1), 69-74. doi:10.1039/b409729g

Levkin, P. A., Kokorin, A. I., Schurig, V., & Kostyanovsky, R. G. (2006). Solid-state ESR differentiation between racemate versus enantiomer. Chirality, 18(4), 232-238. doi:10.1002/chir.20242

Khlestkin, V. K., Glasachev, Y. I., Kokorin, A. I., & Kostyanovsky, R. G. (2004). ESR study of stereochemistry in chiral nitroxide radical crystals. Mendeleev Communications, 14(6), 318-320. doi:10.1070/mc2004v014n06abeh002055

Mäurer, M., & Stegmann, H. B. (1990). Chiral recognition of diastereomeric esters and acetals by EPR and NMR investigations. Chemische Berichte, 123(8), 1679-1685. doi:10.1002/cber.19901230817

Kreilick, R. W., Becher, J., & Ullman, E. F. (1969). Stable free radicals. V. Electron spin resonance studies of nitronylnitroxide radicals with asymmetric centers. Journal of the American Chemical Society, 91(18), 5121-5124. doi:10.1021/ja01046a032

Schuler, P., Schaber, F.-M., Stegmann, H. B., & Janzen, E. (1999). Recognition of chirality in nitroxides using EPR and ENDOR spectroscopy. Magnetic Resonance in Chemistry, 37(11), 805-813. doi:10.1002/(sici)1097-458x(199911)37:11<805::aid-mrc543>3.0.co;2-k

Doktorov, A. B., Mikhailov, S. A., & Purtov, P. A. (1992). Theory of geminate recombination of radical pairs with instantaneously changing spin-Hamiltonian. I. General theory and kinematic approximation. Chemical Physics, 160(2), 223-237. doi:10.1016/0301-0104(92)80124-e

Magin, I. M., Purtov, P. A., Kruppa, A. I., & Leshina, T. V. (2005). Peculiarities of Magnetic and Spin Effects in a Biradical/Stable Radical Complex (Three-Spin System). Theory and Comparison with Experiment. The Journal of Physical Chemistry A, 109(33), 7396-7401. doi:10.1021/jp051115y

Yin, P., Zhang, Z.-M., Lv, H., Li, T., Haso, F., Hu, L., … Liu, T. (2015). Chiral recognition and selection during the self-assembly process of protein-mimic macroanions. Nature Communications, 6(1). doi:10.1038/ncomms7475

Soai, K., Kawasaki, T., & Matsumoto, A. (2014). The Origins of Homochirality Examined by Using Asymmetric Autocatalysis. The Chemical Record, 14(1), 70-83. doi:10.1002/tcr.201300028

Frank, F. C. (1953). On spontaneous asymmetric synthesis. Biochimica et Biophysica Acta, 11, 459-463. doi:10.1016/0006-3002(53)90082-1

Hegstrom, R. A., & Kondepudi, D. K. (1996). Influence of static magnetic fields on chirally autocatalytic radical-pair reactions. Chemical Physics Letters, 253(3-4), 322-326. doi:10.1016/0009-2614(96)00248-5

Ishida, Y., & Aida, T. (2002). Homochiral Supramolecular Polymerization of an «S»-Shaped Chiral Monomer:  Translation of Optical Purity into Molecular Weight Distribution. Journal of the American Chemical Society, 124(47), 14017-14019. doi:10.1021/ja028403h

Sato, K., Itoh, Y., & Aida, T. (2014). Homochiral supramolecular polymerization of bowl-shaped chiral macrocycles in solution. Chem. Sci., 5(1), 136-140. doi:10.1039/c3sc52449c

Dubinets, N. O., Safonov, A. A., & Bagaturyants, A. A. (2016). Structures and Binding Energies of the Naphthalene Dimer in Its Ground and Excited States. The Journal of Physical Chemistry A, 120(17), 2779-2782. doi:10.1021/acs.jpca.6b03761

‘Excimer’ fluorescence VII. Spectral studies of naphthalene and its derivatives. (1965). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 284(1399), 551-565. doi:10.1098/rspa.1965.0080

Kerr, H. E., Softley, L. K., Suresh, K., Hodgkinson, P., & Evans, I. R. (2017). Structure and physicochemical characterization of a naproxen–picolinamide cocrystal. Acta Crystallographica Section C Structural Chemistry, 73(3), 168-175. doi:10.1107/s2053229616011980

Saprygina, N. N., Morozova, O. B., Gritsan, N. P., Fedorova, O. S., & Yurkovskaya, A. V. (2011). 1H CIDNP study of the kinetics and mechanism of the reversible photoinduced oxidation of tryptophyl-tryptophan dipeptide in aqueous solutions. Russian Chemical Bulletin, 60(12), 2579-2587. doi:10.1007/s11172-011-0396-0

Schwarz, W., Dangel, K. M., Bargon, J., & Jones, G. (1982). CIDNP studies of photoinitiated electron-transfer reactions. Sensitized isomerization of an electron-acceptor norbornadiene. Journal of the American Chemical Society, 104(21), 5686-5689. doi:10.1021/ja00385a022

Gilbert, B. C., Larkin, J. P., & Norman, R. O. C. (1972). Electron spin resonance studies. Part XXXIV. The use of the aci-anion from nitromethane as a spin trap for organic radicals in aqueous solution. Journal of the Chemical Society, Perkin Transactions 2, (9), 1272. doi:10.1039/p29720001272

Mäurer, M., Stegmann, H. B., Hiller, W., & Müller, B. (1992). Stereoelectronic and Steric Effects in the Synthesis and Recognition of Diastereomeric Ethers by NMR and EPR Spectroscopy. Chemische Berichte, 125(4), 857-865. doi:10.1002/cber.19921250417

Pejov, L. (2001). A gradient-corrected density functional study of indole self-association through N–H⋯π hydrogen bonding. Chemical Physics Letters, 339(3-4), 269-278. doi:10.1016/s0009-2614(01)00341-4

Muñoz, M. ., Ferrero, R., Carmona, C., & Balón, M. (2004). Hydrogen bonding interactions between indole and benzenoid-π-bases. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(1-2), 193-200. doi:10.1016/s1386-1425(03)00206-3

Hatton, J. V., & Richards, R. E. (1962). Solvent effects in N.M.R. spectra of amide solutions. Molecular Physics, 5(2), 139-152. doi:10.1080/00268976200100141

Vayá, I., Andreu, I., Jiménez, M. C., & Miranda, M. A. (2014). Photooxygenation mechanisms in naproxen–amino acid linked systems. Photochem. Photobiol. Sci., 13(2), 224-230. doi:10.1039/c3pp50252j

Gavezzotti, A. (1994). Are Crystal Structures Predictable? Accounts of Chemical Research, 27(10), 309-314. doi:10.1021/ar00046a004

Gavezzotti, A., & Filippini, G. (1994). Geometry of the Intermolecular X-H.cntdot..cntdot..cntdot.Y (X, Y = N, O) Hydrogen Bond and the Calibration of Empirical Hydrogen-Bond Potentials. The Journal of Physical Chemistry, 98(18), 4831-4837. doi:10.1021/j100069a010

Closs, G. L., & Miller, R. J. (1979). Laser flash photolysis with NMR detection. Microsecond time-resolved CIDNP: separation of geminate and random-phase processes. Journal of the American Chemical Society, 101(6), 1639-1641. doi:10.1021/ja00500a068

Goez, M. (1992). Pseudo steady-state photo-CIDNP measurements. Chemical Physics Letters, 188(5-6), 451-456. doi:10.1016/0009-2614(92)80847-5

Rychkov, D. A., Arkhipov, S. G., & Boldyreva, E. V. (2014). Simple and efficient modifications of well known techniques for reliable growth of high-quality crystals of small bioorganic molecules. Journal of Applied Crystallography, 47(4), 1435-1442. doi:10.1107/s1600576714011273

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem