- -

Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket

Show full item record

Besharat, M.; Coronado-Hernández, OE.; Fuertes-Miquel, VS.; Viseu, MT.; Ramos, HM. (2018). Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket. Urban Water Journal. 15(8):769-779. https://doi.org/10.1080/1573062X.2018.1540711

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145202

Files in this item

Item Metadata

Title: Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket
Author: Besharat, Mohsen Coronado-Hernández, Oscar Enrique Fuertes-Miquel, Vicente S. Viseu, Maria Teresa Ramos, Helena M.
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Issued date:
Abstract:
[EN] The prediction of the pressure inside the air pocket in water pipelines has been the topic for a lot of research works. Several aspects in this field have been discussed, such as the filling and the emptying procedures. ...[+]
Subjects: Emptying process , Transient two-phase flow , Backflow air
Copyrigths: Reserva de todos los derechos
Source:
Urban Water Journal. (issn: 1573-062X )
DOI: 10.1080/1573062X.2018.1540711
Publisher:
Taylor & Francis
Publisher version: https://doi.org/10.1080/1573062X.2018.1540711
Project ID:
FCT/PD/BD/114459/2016
Thanks:
This work was supported by the Fundação para a Ciência e a Tecnologia (FCT), Portugal under grant number PD/BD/114459/2016.
Type: Artículo

References

Benjamin, T. B. (1968). Gravity currents and related phenomena. Journal of Fluid Mechanics, 31(2), 209-248. doi:10.1017/s0022112068000133

Besharat, M., Teresa Viseu, M., & Ramos, H. (2017). Experimental Study of Air Vessel Behavior for Energy Storage or System Protection in Water Hammer Events. Water, 9(1), 63. doi:10.3390/w9010063

Besharat, M., Tarinejad, R., & Ramos, H. M. (2015). The effect of water hammer on a confined air pocket towards flow energy storage system. Journal of Water Supply: Research and Technology-Aqua, 65(2), 116-126. doi:10.2166/aqua.2015.081 [+]
Benjamin, T. B. (1968). Gravity currents and related phenomena. Journal of Fluid Mechanics, 31(2), 209-248. doi:10.1017/s0022112068000133

Besharat, M., Teresa Viseu, M., & Ramos, H. (2017). Experimental Study of Air Vessel Behavior for Energy Storage or System Protection in Water Hammer Events. Water, 9(1), 63. doi:10.3390/w9010063

Besharat, M., Tarinejad, R., & Ramos, H. M. (2015). The effect of water hammer on a confined air pocket towards flow energy storage system. Journal of Water Supply: Research and Technology-Aqua, 65(2), 116-126. doi:10.2166/aqua.2015.081

Besharat, M., Tarinejad, R., Aalami, M. T., & Ramos, H. M. (2016). Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis. Water Resources Management, 30(8), 2687-2702. doi:10.1007/s11269-016-1310-1

Coronado-Hernández, O., Fuertes-Miquel, V., Besharat, M., & Ramos, H. (2017). Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water, 9(2), 98. doi:10.3390/w9020098

Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Besharat, M., & Ramos, H. M. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal, 15(4), 346-352. doi:10.1080/1573062x.2018.1475578

Edmunds, R. C. (1979). Air Binding in Pipes. Journal - American Water Works Association, 71(5), 272-277. doi:10.1002/j.1551-8833.1979.tb04348.x

Escarameia, M. (2007). Investigating hydraulic removal of air from water pipelines. Proceedings of the Institution of Civil Engineers - Water Management, 160(1), 25-34. doi:10.1680/wama.2007.160.1.25

Izquierdo, J., Fuertes, V. S., Cabrera, E., Iglesias, P. L., & Garcia-Serra, J. (1999). Pipeline start-up with entrapped air. Journal of Hydraulic Research, 37(5), 579-590. doi:10.1080/00221689909498518

Kader, B. A. (1981). Temperature and concentration profiles in fully turbulent boundary layers. International Journal of Heat and Mass Transfer, 24(9), 1541-1544. doi:10.1016/0017-9310(81)90220-9

Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631

Leon, A. S., Ghidaoui, M. S., Schmidt, A. R., & Garcia, M. H. (2010). A robust two-equation model for transient-mixed flows. Journal of Hydraulic Research, 48(1), 44-56. doi:10.1080/00221680903565911

Martins, N. M. C., Delgado, J. N., Ramos, H. M., & Covas, D. I. C. (2017). Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. Journal of Hydraulic Research, 55(4), 506-519. doi:10.1080/00221686.2016.1275046

Martins, S. C., Ramos, H. M., & Almeida, A. B. (2015). Conceptual analogy for modelling entrapped air action in hydraulic systems. Journal of Hydraulic Research, 53(5), 678-686. doi:10.1080/00221686.2015.1077353

Pozos, O., Gonzalez, C. A., Giesecke, J., Marx, W., & Rodal, E. A. (2010). Air entrapped in gravity pipeline systems. Journal of Hydraulic Research, 48(3), 338-347. doi:10.1080/00221686.2010.481839

Ramezani, L., Karney, B., & Malekpour, A. (2016). Encouraging Effective Air Management in Water Pipelines: A Critical Review. Journal of Water Resources Planning and Management, 142(12), 04016055. doi:10.1061/(asce)wr.1943-5452.0000695

Richards, R. T. (1962). Air Binding in Water Pipelines. Journal - American Water Works Association, 54(6), 719-730. doi:10.1002/j.1551-8833.1962.tb00883.x

Tijsseling, A. S., Hou, Q., Bozkuş, Z., & Laanearu, J. (2015). Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. Journal of Pressure Vessel Technology, 138(3). doi:10.1115/1.4031508

Triki, A. (2015). Water-hammer control in pressurized-pipe flow using an in-line polymeric short-section. Acta Mechanica, 227(3), 777-793. doi:10.1007/s00707-015-1493-1

Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984)

Wang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., … Xu, C. (2016). CFD Approach for Column Separation in Water Pipelines. Journal of Hydraulic Engineering, 142(10), 04016036. doi:10.1061/(asce)hy.1943-7900.0001171

Zhou, F., Hicks, F. E., & Steffler, P. M. (2002). Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air. Journal of Hydraulic Engineering, 128(6), 625-634. doi:10.1061/(asce)0733-9429(2002)128:6(625)

Zhou, L., Liu, D., & Karney, B. (2013). Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline. Journal of Hydraulic Engineering, 139(9), 949-959. doi:10.1061/(asce)hy.1943-7900.0000750

Zhou, L., Liu, D., & Ou, C. (2011). Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Engineering Applications of Computational Fluid Mechanics, 5(1), 127-140. doi:10.1080/19942060.2011.11015357

Zhou, L., Wang, H., Karney, B., Liu, D., Wang, P., & Guo, S. (2018). Dynamic Behavior of Entrapped Air Pocket in a Water Filling Pipeline. Journal of Hydraulic Engineering, 144(8), 04018045. doi:10.1061/(asce)hy.1943-7900.0001491

Zukoski, E. E. (1966). Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes. Journal of Fluid Mechanics, 25(4), 821-837. doi:10.1017/s0022112066000442

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record