- -

Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket

Show simple item record

Files in this item

dc.contributor.author Besharat, Mohsen es_ES
dc.contributor.author Coronado-Hernández, Oscar Enrique es_ES
dc.contributor.author Fuertes-Miquel, Vicente S. es_ES
dc.contributor.author Viseu, Maria Teresa es_ES
dc.contributor.author Ramos, Helena M. es_ES
dc.date.accessioned 2020-06-04T06:30:46Z
dc.date.available 2020-06-04T06:30:46Z
dc.date.issued 2018-11-14 es_ES
dc.identifier.issn 1573-062X es_ES
dc.identifier.uri http://hdl.handle.net/10251/145202
dc.description.abstract [EN] The prediction of the pressure inside the air pocket in water pipelines has been the topic for a lot of research works. Several aspects in this field have been discussed, such as the filling and the emptying procedures. The emptying process can affect the safety and the efficiency of water systems. Current research presents an analysis of the emptying process using experimental and computational results. The phenomenon is simulated using the two-dimensional computational fluid dynamics (2D CFD) and the one-dimensional mathematical (1D) models. A backflow air analysis is also provided based on CFD simulations. The developed models show good ability in the prediction of the sub-atmospheric pressure and the flow velocity in the system. In most of the cases, the 1D and 2D CFD models show similar performance in the prediction of the pressure and the velocity results. The backflow air development can be accurately explained using the CFD model. es_ES
dc.description.sponsorship This work was supported by the Fundação para a Ciência e a Tecnologia (FCT), Portugal under grant number PD/BD/114459/2016. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Urban Water Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Emptying process es_ES
dc.subject Transient two-phase flow es_ES
dc.subject Backflow air es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.title Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/1573062X.2018.1540711 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//PD%2FBD%2F114459%2F2016/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Besharat, M.; Coronado-Hernández, OE.; Fuertes-Miquel, VS.; Viseu, MT.; Ramos, HM. (2018). Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket. Urban Water Journal. 15(8):769-779. https://doi.org/10.1080/1573062X.2018.1540711 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/1573062X.2018.1540711 es_ES
dc.description.upvformatpinicio 769 es_ES
dc.description.upvformatpfin 779 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\384825 es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.description.references Benjamin, T. B. (1968). Gravity currents and related phenomena. Journal of Fluid Mechanics, 31(2), 209-248. doi:10.1017/s0022112068000133 es_ES
dc.description.references Besharat, M., Teresa Viseu, M., & Ramos, H. (2017). Experimental Study of Air Vessel Behavior for Energy Storage or System Protection in Water Hammer Events. Water, 9(1), 63. doi:10.3390/w9010063 es_ES
dc.description.references Besharat, M., Tarinejad, R., & Ramos, H. M. (2015). The effect of water hammer on a confined air pocket towards flow energy storage system. Journal of Water Supply: Research and Technology-Aqua, 65(2), 116-126. doi:10.2166/aqua.2015.081 es_ES
dc.description.references Besharat, M., Tarinejad, R., Aalami, M. T., & Ramos, H. M. (2016). Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis. Water Resources Management, 30(8), 2687-2702. doi:10.1007/s11269-016-1310-1 es_ES
dc.description.references Coronado-Hernández, O., Fuertes-Miquel, V., Besharat, M., & Ramos, H. (2017). Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves. Water, 9(2), 98. doi:10.3390/w9020098 es_ES
dc.description.references Coronado-Hernández, O. E., Fuertes-Miquel, V. S., Besharat, M., & Ramos, H. M. (2018). Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water Journal, 15(4), 346-352. doi:10.1080/1573062x.2018.1475578 es_ES
dc.description.references Edmunds, R. C. (1979). Air Binding in Pipes. Journal - American Water Works Association, 71(5), 272-277. doi:10.1002/j.1551-8833.1979.tb04348.x es_ES
dc.description.references Escarameia, M. (2007). Investigating hydraulic removal of air from water pipelines. Proceedings of the Institution of Civil Engineers - Water Management, 160(1), 25-34. doi:10.1680/wama.2007.160.1.25 es_ES
dc.description.references Izquierdo, J., Fuertes, V. S., Cabrera, E., Iglesias, P. L., & Garcia-Serra, J. (1999). Pipeline start-up with entrapped air. Journal of Hydraulic Research, 37(5), 579-590. doi:10.1080/00221689909498518 es_ES
dc.description.references Kader, B. A. (1981). Temperature and concentration profiles in fully turbulent boundary layers. International Journal of Heat and Mass Transfer, 24(9), 1541-1544. doi:10.1016/0017-9310(81)90220-9 es_ES
dc.description.references Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631 es_ES
dc.description.references Leon, A. S., Ghidaoui, M. S., Schmidt, A. R., & Garcia, M. H. (2010). A robust two-equation model for transient-mixed flows. Journal of Hydraulic Research, 48(1), 44-56. doi:10.1080/00221680903565911 es_ES
dc.description.references Martins, N. M. C., Delgado, J. N., Ramos, H. M., & Covas, D. I. C. (2017). Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. Journal of Hydraulic Research, 55(4), 506-519. doi:10.1080/00221686.2016.1275046 es_ES
dc.description.references Martins, S. C., Ramos, H. M., & Almeida, A. B. (2015). Conceptual analogy for modelling entrapped air action in hydraulic systems. Journal of Hydraulic Research, 53(5), 678-686. doi:10.1080/00221686.2015.1077353 es_ES
dc.description.references Pozos, O., Gonzalez, C. A., Giesecke, J., Marx, W., & Rodal, E. A. (2010). Air entrapped in gravity pipeline systems. Journal of Hydraulic Research, 48(3), 338-347. doi:10.1080/00221686.2010.481839 es_ES
dc.description.references Ramezani, L., Karney, B., & Malekpour, A. (2016). Encouraging Effective Air Management in Water Pipelines: A Critical Review. Journal of Water Resources Planning and Management, 142(12), 04016055. doi:10.1061/(asce)wr.1943-5452.0000695 es_ES
dc.description.references Richards, R. T. (1962). Air Binding in Water Pipelines. Journal - American Water Works Association, 54(6), 719-730. doi:10.1002/j.1551-8833.1962.tb00883.x es_ES
dc.description.references Tijsseling, A. S., Hou, Q., Bozkuş, Z., & Laanearu, J. (2015). Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. Journal of Pressure Vessel Technology, 138(3). doi:10.1115/1.4031508 es_ES
dc.description.references Triki, A. (2015). Water-hammer control in pressurized-pipe flow using an in-line polymeric short-section. Acta Mechanica, 227(3), 777-793. doi:10.1007/s00707-015-1493-1 es_ES
dc.description.references Vasconcelos, J. G., & Wright, S. J. (2008). Rapid Flow Startup in Filled Horizontal Pipelines. Journal of Hydraulic Engineering, 134(7), 984-992. doi:10.1061/(asce)0733-9429(2008)134:7(984) es_ES
dc.description.references Wang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., … Xu, C. (2016). CFD Approach for Column Separation in Water Pipelines. Journal of Hydraulic Engineering, 142(10), 04016036. doi:10.1061/(asce)hy.1943-7900.0001171 es_ES
dc.description.references Zhou, F., Hicks, F. E., & Steffler, P. M. (2002). Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air. Journal of Hydraulic Engineering, 128(6), 625-634. doi:10.1061/(asce)0733-9429(2002)128:6(625) es_ES
dc.description.references Zhou, L., Liu, D., & Karney, B. (2013). Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline. Journal of Hydraulic Engineering, 139(9), 949-959. doi:10.1061/(asce)hy.1943-7900.0000750 es_ES
dc.description.references Zhou, L., Liu, D., & Ou, C. (2011). Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Engineering Applications of Computational Fluid Mechanics, 5(1), 127-140. doi:10.1080/19942060.2011.11015357 es_ES
dc.description.references Zhou, L., Wang, H., Karney, B., Liu, D., Wang, P., & Guo, S. (2018). Dynamic Behavior of Entrapped Air Pocket in a Water Filling Pipeline. Journal of Hydraulic Engineering, 144(8), 04018045. doi:10.1061/(asce)hy.1943-7900.0001491 es_ES
dc.description.references Zukoski, E. E. (1966). Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes. Journal of Fluid Mechanics, 25(4), 821-837. doi:10.1017/s0022112066000442 es_ES


This item appears in the following Collection(s)

Show simple item record