- -

Electron drift properties in high pressure gaseous xenon

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Electron drift properties in high pressure gaseous xenon

Show full item record

Simon, A.; Felkai, R.; Martinez-Lema, G.; Monrabal, F.; Gonzalez-Diaz, D.; Sorel, M.; Hernando Morata, JA.... (2018). Electron drift properties in high pressure gaseous xenon. Journal of Instrumentation. 13. https://doi.org/10.1088/1748-0221/13/07/P07013

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145209

Files in this item

Item Metadata

Title: Electron drift properties in high pressure gaseous xenon
Author: Simon, A. Felkai, R. Martinez-Lema, G. Monrabal, F. Gonzalez-Diaz, D. Sorel, M. Hernando Morata, J. A. Gomez-Cadenas, J. J. Adams, C. Álvarez-Puerta, Vicente Ballester Merelo, Francisco José Esteve Bosch, Raul Herrero Bosch, Vicente Mora Mas, Francisco José Toledo Alarcón, José Francisco
UPV Unit: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
[EN] Gaseous time projection chambers (TPC) are a very attractive detector technology for particle tracking. Characterization of both drift velocity and di¿usion is of great importance to correctly assess their tracking ...[+]
Subjects: Charge transport and multiplication in gas , Charge transport , Multiplication and electroluminescence in rare gases and liquids , Double-beta decay detectors , Gaseous imaging and tracking detectors
Copyrigths: Reserva de todos los derechos
Source:
Journal of Instrumentation. (issn: 1748-0221 )
DOI: 10.1088/1748-0221/13/07/P07013
Publisher:
IOP Publishing
Publisher version: https://doi.org/10.1088/1748-0221/13/07/P07013
Project ID:
info:eu-repo/grantAgreement/EC/FP7/339787/EU/Towards the NEXT generation of bb0nu experimets/
DOE/ DE-AC02-07CH11359
...[+]
info:eu-repo/grantAgreement/EC/FP7/339787/EU/Towards the NEXT generation of bb0nu experimets/
info:eu-repo/grantAgreement/EC/H2020/674896/EU/The Elusives Enterprise: Asymmetries of the Invisible Universe/
info:eu-repo/grantAgreement/EC/H2020/690575/EU/InvisiblesPlus/
info:eu-repo/grantAgreement/EC/H2020/740055/EU/Molecule for low diffusion TPCs for rare event searches/
DOE/ DE-AC02-07CH11359
DOE/DE-FG02-13ER42020
DOE/DE-SC0017721
FEDER/PTDC/FIS-NUC/2525/2014
FEDER/UID/FIS/04559/2013
MICINN/SEV-2014-0398
MICINN/MDM-2016-0692
GV/PROMETEO/2016/120
GV/SEJI/2017/011
FCT/PTDC/FIS-NUC/2525/2014
FCT/UID/FIS/04559/2013
[-]
Thanks:
The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and ...[+]
Type: Artículo

References

Nygren, D. (2009). High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 603(3), 337-348. doi:10.1016/j.nima.2009.01.222

Gómez Cadenas, J. J., Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., … Dias, T. H. V. T. (2014). Present Status and Future Perspectives of the NEXT Experiment. Advances in High Energy Physics, 2014, 1-22. doi:10.1155/2014/907067

Martín-Albo, J., Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gómez-Cadenas, J. J., … Cárcel, S. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics, 2016(5). doi:10.1007/jhep05(2016)159 [+]
Nygren, D. (2009). High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 603(3), 337-348. doi:10.1016/j.nima.2009.01.222

Gómez Cadenas, J. J., Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., … Dias, T. H. V. T. (2014). Present Status and Future Perspectives of the NEXT Experiment. Advances in High Energy Physics, 2014, 1-22. doi:10.1155/2014/907067

Martín-Albo, J., Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gómez-Cadenas, J. J., … Cárcel, S. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics, 2016(5). doi:10.1007/jhep05(2016)159

Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment. Journal of Instrumentation, 8(04), P04002-P04002. doi:10.1088/1748-0221/8/04/p04002

Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array. Journal of Instrumentation, 8(09), P09011-P09011. doi:10.1088/1748-0221/8/09/p09011

Álvarez, V., Borges, F. I. G. M., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Near-intrinsic energy resolution for 30–662keV gamma rays in a high pressure xenon electroluminescent TPC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 708, 101-114. doi:10.1016/j.nima.2012.12.123

Ferrario, P., Laing, A., López-March, N., Gómez-Cadenas, J. J., Álvarez, V., … Cebrián, S. (2016). First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment. Journal of High Energy Physics, 2016(1). doi:10.1007/jhep01(2016)104

Pack, J. L., Voshall, R. E., & Phelps, A. V. (1962). Drift Velocities of Slow Electrons in Krypton, Xenon, Deuterium, Carbon Monoxide, Carbon Dioxide, Water Vapor, Nitrous Oxide, and Ammonia. Physical Review, 127(6), 2084-2089. doi:10.1103/physrev.127.2084

Pack, J. L., Voshall, R. E., Phelps, A. V., & Kline, L. E. (1992). Longitudinal electron diffusion coefficients in gases: Noble gases. Journal of Applied Physics, 71(11), 5363-5371. doi:10.1063/1.350555

Bowe, J. C. (1960). Drift Velocity of Electrons in Nitrogen, Helium, Neon, Argon, Krypton, and Xenon. Physical Review, 117(6), 1411-1415. doi:10.1103/physrev.117.1411

Patrick, E. L., Andrews, M. L., & Garscadden, A. (1991). Electron drift velocities in xenon and xenon‐nitrogen gas mixtures. Applied Physics Letters, 59(25), 3239-3240. doi:10.1063/1.105744

English, W. N., & Hanna, G. C. (1953). GRID IONIZATION CHAMBER MEASUREMENTS OF ELECTRON DRIFT VELOCITIES IN GAS MIXTURES. Canadian Journal of Physics, 31(5), 768-797. doi:10.1139/p53-070

Hunter, S. R., Carter, J. G., & Christophorou, L. G. (1988). Low-energy electron drift and scattering in krypton and xenon. Physical Review A, 38(11), 5539-5551. doi:10.1103/physreva.38.5539

Kobayashi, S., Hasebe, N., Hosojima, T., Ishizaki, T., Iwamatsu, K., Mimura, M., … Ishizuka, A. (2006). Ratio of Transverse Diffusion Coefficient to Mobility of Electrons in High-Pressure Xenon and Xenon Doped with Hydrogen. Japanese Journal of Applied Physics, 45(10A), 7894-7900. doi:10.1143/jjap.45.7894

Álvarez, V., Borges, F. I. G., Cárcel, S., Cebrián, S., Cervera, A., Conde, C. A. N., … Esteve, R. (2013). Ionization and scintillation response of high-pressure xenon gas to alpha particles. Journal of Instrumentation, 8(05), P05025-P05025. doi:10.1088/1748-0221/8/05/p05025

Lorca, D., Martín-Albo, J., Laing, A., Ferrario, P., Gómez-Cadenas, J. J., Álvarez, V., … Cebrián, S. (2014). Characterisation of NEXT-DEMO using xenon KαX-rays. Journal of Instrumentation, 9(10), P10007-P10007. doi:10.1088/1748-0221/9/10/p10007

Kusano, H., Lopes, J. A. M., Miyajima, M., & Hasebe, N. (2013). Longitudinal and transverse diffusion of electrons in high-pressure xenon. Journal of Instrumentation, 8(01), C01028-C01028. doi:10.1088/1748-0221/8/01/c01028

Henriques, C. A. O., Freitas, E. D. C., Azevedo, C. D. R., González-Díaz, D., Mano, R. D. P., Jorge, M. R., … Álvarez, V. (2017). Secondary scintillation yield of xenon with sub-percent levels of CO2 additive for rare-event detection. Physics Letters B, 773, 663-671. doi:10.1016/j.physletb.2017.09.017

Obert, E. F. (1948). Compressibility Chart and the Ideal Reduced Volume. Industrial & Engineering Chemistry, 40(11), 2185-2186. doi:10.1021/ie50467a036

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Barrand, G. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8

González-Díaz, D., Monrabal, F., & Murphy, S. (2018). Gaseous and dual-phase time projection chambers for imaging rare processes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878, 200-255. doi:10.1016/j.nima.2017.09.024

Álvarez, V., Borges, F. I. G. M., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2014). Characterization of a medium size Xe/TMA TPC instrumented with microbulk Micromegas, using low-energy γ-rays. Journal of Instrumentation, 9(04), C04015-C04015. doi:10.1088/1748-0221/9/04/c04015

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record