Mostrar el registro sencillo del ítem
dc.contributor.author | Simon, A. | es_ES |
dc.contributor.author | Felkai, R. | es_ES |
dc.contributor.author | Martinez-Lema, G. | es_ES |
dc.contributor.author | Monrabal, F. | es_ES |
dc.contributor.author | Gonzalez-Diaz, D. | es_ES |
dc.contributor.author | Sorel, M. | es_ES |
dc.contributor.author | Hernando Morata, J. A. | es_ES |
dc.contributor.author | Gomez-Cadenas, J. J. | es_ES |
dc.contributor.author | Adams, C. | es_ES |
dc.contributor.author | Álvarez-Puerta, Vicente | es_ES |
dc.contributor.author | Ballester Merelo, Francisco José | es_ES |
dc.contributor.author | Esteve Bosch, Raul | es_ES |
dc.contributor.author | Herrero Bosch, Vicente | es_ES |
dc.contributor.author | Mora Mas, Francisco José | es_ES |
dc.contributor.author | Toledo Alarcón, José Francisco | es_ES |
dc.date.accessioned | 2020-06-04T06:31:05Z | |
dc.date.available | 2020-06-04T06:31:05Z | |
dc.date.issued | 2018-07 | es_ES |
dc.identifier.issn | 1748-0221 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145209 | |
dc.description.abstract | [EN] Gaseous time projection chambers (TPC) are a very attractive detector technology for particle tracking. Characterization of both drift velocity and di¿usion is of great importance to correctly assess their tracking capabilities. NEXT-White is a High Pressure Xenon gas TPC with electroluminescent ampli¿cation, a 1:2 scale model of the future NEXT-100detector, which will be dedicated to neutrinoless double beta decay searches. NEXT-White has been operating at Canfranc Underground Laboratory (LSC) since December2016. The drift parameters have been measured using 83mKr for a range of reduced drift ¿elds at two di¿erent pressure regimes, namely 7.2 bar and 9.1 bar. Theresults have been compared with Magboltz simulations. Agreement at the 5% level or better has been found for drift velocity, longitudinal di¿usion and transverse di¿usion. | es_ES |
dc.description.sponsorship | The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04, the Severo Ochoa Program SEV-2014-0398 and the Maria de Maetzu Program MDM-2016-0692; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT and FEDER through the program COMPETE, projects PTDC/FIS-NUC/2525/2014 and UID/FIS/04559/2013; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M) and de-sc0017721 (University of Texas at Arlington); and the University of Texas at Arlington. We also warmly acknowledge the Laboratorio Nazionale di Gran Sasso (LNGS) and the Dark Side collaboration for their help with TPB coating of various parts of the NEXT-White TPC. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing | es_ES |
dc.relation.ispartof | Journal of Instrumentation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Charge transport and multiplication in gas | es_ES |
dc.subject | Charge transport | es_ES |
dc.subject | Multiplication and electroluminescence in rare gases and liquids | es_ES |
dc.subject | Double-beta decay detectors | es_ES |
dc.subject | Gaseous imaging and tracking detectors | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Electron drift properties in high pressure gaseous xenon | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/1748-0221/13/07/P07013 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/339787/EU/Towards the NEXT generation of bb0nu experimets/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DOE//DE-AC02-07CH11359/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/674896/EU/The Elusives Enterprise: Asymmetries of the Invisible Universe/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DOE//DE-FG02-13ER42020/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/690575/EU/InvisiblesPlus/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DOE//DE-SC0017721/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/740055/EU/Molecule for low diffusion TPCs for rare event searches/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2014-0398/ES/INSTITUTO DE FISICA CORPUSCULAR (IFIC)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/PTDC/PTDC%2FFIS-NUC%2F2525%2F2014/PT/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MDM-2016-0692/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/UID/UID%2FFIS%2F04559%2F2013/PT/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F120/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//SEJI%2F2017%2F011/ES/Aprendizaje profundo en análisis de detectores en física/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Simon, A.; Felkai, R.; Martinez-Lema, G.; Monrabal, F.; Gonzalez-Diaz, D.; Sorel, M.; Hernando Morata, JA.... (2018). Electron drift properties in high pressure gaseous xenon. Journal of Instrumentation. 13. https://doi.org/10.1088/1748-0221/13/07/P07013 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1088/1748-0221/13/07/P07013 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.relation.pasarela | S\370027 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | U.S. Department of Energy | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Nygren, D. (2009). High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 603(3), 337-348. doi:10.1016/j.nima.2009.01.222 | es_ES |
dc.description.references | Gómez Cadenas, J. J., Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., … Dias, T. H. V. T. (2014). Present Status and Future Perspectives of the NEXT Experiment. Advances in High Energy Physics, 2014, 1-22. doi:10.1155/2014/907067 | es_ES |
dc.description.references | Martín-Albo, J., Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gómez-Cadenas, J. J., … Cárcel, S. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics, 2016(5). doi:10.1007/jhep05(2016)159 | es_ES |
dc.description.references | Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment. Journal of Instrumentation, 8(04), P04002-P04002. doi:10.1088/1748-0221/8/04/p04002 | es_ES |
dc.description.references | Álvarez, V., Borges, F. I. G., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array. Journal of Instrumentation, 8(09), P09011-P09011. doi:10.1088/1748-0221/8/09/p09011 | es_ES |
dc.description.references | Álvarez, V., Borges, F. I. G. M., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2013). Near-intrinsic energy resolution for 30–662keV gamma rays in a high pressure xenon electroluminescent TPC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 708, 101-114. doi:10.1016/j.nima.2012.12.123 | es_ES |
dc.description.references | Ferrario, P., Laing, A., López-March, N., Gómez-Cadenas, J. J., Álvarez, V., … Cebrián, S. (2016). First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment. Journal of High Energy Physics, 2016(1). doi:10.1007/jhep01(2016)104 | es_ES |
dc.description.references | Pack, J. L., Voshall, R. E., & Phelps, A. V. (1962). Drift Velocities of Slow Electrons in Krypton, Xenon, Deuterium, Carbon Monoxide, Carbon Dioxide, Water Vapor, Nitrous Oxide, and Ammonia. Physical Review, 127(6), 2084-2089. doi:10.1103/physrev.127.2084 | es_ES |
dc.description.references | Pack, J. L., Voshall, R. E., Phelps, A. V., & Kline, L. E. (1992). Longitudinal electron diffusion coefficients in gases: Noble gases. Journal of Applied Physics, 71(11), 5363-5371. doi:10.1063/1.350555 | es_ES |
dc.description.references | Bowe, J. C. (1960). Drift Velocity of Electrons in Nitrogen, Helium, Neon, Argon, Krypton, and Xenon. Physical Review, 117(6), 1411-1415. doi:10.1103/physrev.117.1411 | es_ES |
dc.description.references | Patrick, E. L., Andrews, M. L., & Garscadden, A. (1991). Electron drift velocities in xenon and xenon‐nitrogen gas mixtures. Applied Physics Letters, 59(25), 3239-3240. doi:10.1063/1.105744 | es_ES |
dc.description.references | English, W. N., & Hanna, G. C. (1953). GRID IONIZATION CHAMBER MEASUREMENTS OF ELECTRON DRIFT VELOCITIES IN GAS MIXTURES. Canadian Journal of Physics, 31(5), 768-797. doi:10.1139/p53-070 | es_ES |
dc.description.references | Hunter, S. R., Carter, J. G., & Christophorou, L. G. (1988). Low-energy electron drift and scattering in krypton and xenon. Physical Review A, 38(11), 5539-5551. doi:10.1103/physreva.38.5539 | es_ES |
dc.description.references | Kobayashi, S., Hasebe, N., Hosojima, T., Ishizaki, T., Iwamatsu, K., Mimura, M., … Ishizuka, A. (2006). Ratio of Transverse Diffusion Coefficient to Mobility of Electrons in High-Pressure Xenon and Xenon Doped with Hydrogen. Japanese Journal of Applied Physics, 45(10A), 7894-7900. doi:10.1143/jjap.45.7894 | es_ES |
dc.description.references | Álvarez, V., Borges, F. I. G., Cárcel, S., Cebrián, S., Cervera, A., Conde, C. A. N., … Esteve, R. (2013). Ionization and scintillation response of high-pressure xenon gas to alpha particles. Journal of Instrumentation, 8(05), P05025-P05025. doi:10.1088/1748-0221/8/05/p05025 | es_ES |
dc.description.references | Lorca, D., Martín-Albo, J., Laing, A., Ferrario, P., Gómez-Cadenas, J. J., Álvarez, V., … Cebrián, S. (2014). Characterisation of NEXT-DEMO using xenon KαX-rays. Journal of Instrumentation, 9(10), P10007-P10007. doi:10.1088/1748-0221/9/10/p10007 | es_ES |
dc.description.references | Kusano, H., Lopes, J. A. M., Miyajima, M., & Hasebe, N. (2013). Longitudinal and transverse diffusion of electrons in high-pressure xenon. Journal of Instrumentation, 8(01), C01028-C01028. doi:10.1088/1748-0221/8/01/c01028 | es_ES |
dc.description.references | Henriques, C. A. O., Freitas, E. D. C., Azevedo, C. D. R., González-Díaz, D., Mano, R. D. P., Jorge, M. R., … Álvarez, V. (2017). Secondary scintillation yield of xenon with sub-percent levels of CO2 additive for rare-event detection. Physics Letters B, 773, 663-671. doi:10.1016/j.physletb.2017.09.017 | es_ES |
dc.description.references | Obert, E. F. (1948). Compressibility Chart and the Ideal Reduced Volume. Industrial & Engineering Chemistry, 40(11), 2185-2186. doi:10.1021/ie50467a036 | es_ES |
dc.description.references | Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Barrand, G. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8 | es_ES |
dc.description.references | González-Díaz, D., Monrabal, F., & Murphy, S. (2018). Gaseous and dual-phase time projection chambers for imaging rare processes. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878, 200-255. doi:10.1016/j.nima.2017.09.024 | es_ES |
dc.description.references | Álvarez, V., Borges, F. I. G. M., Cárcel, S., Castel, J., Cebrián, S., Cervera, A., … Díaz, J. (2014). Characterization of a medium size Xe/TMA TPC instrumented with microbulk Micromegas, using low-energy γ-rays. Journal of Instrumentation, 9(04), C04015-C04015. doi:10.1088/1748-0221/9/04/c04015 | es_ES |