Faisal, M., Ibrahim, A. A., Harraz, F. A., Bouzid, H., Al-Assiri, M. S., & Ismail, A. A. (2015). SnO2 doped ZnO nanostructures for highly efficient photocatalyst. Journal of Molecular Catalysis A: Chemical, 397, 19-25. doi:10.1016/j.molcata.2014.10.027
ABUTARIQ, M., FAISAL, M., & MUNEER, M. (2005). Semiconductor-mediated photocatalysed degradation of two selected azo dye derivatives, amaranth and bismarck brown in aqueous suspension. Journal of Hazardous Materials, 127(1-3), 172-179. doi:10.1016/j.jhazmat.2005.07.001
Ismail, A. A., & Bahnemann, D. W. (2011). Mesostructured Pt/TiO2Nanocomposites as Highly Active Photocatalysts for the Photooxidation of Dichloroacetic Acid. The Journal of Physical Chemistry C, 115(13), 5784-5791. doi:10.1021/jp110959b
[+]
Faisal, M., Ibrahim, A. A., Harraz, F. A., Bouzid, H., Al-Assiri, M. S., & Ismail, A. A. (2015). SnO2 doped ZnO nanostructures for highly efficient photocatalyst. Journal of Molecular Catalysis A: Chemical, 397, 19-25. doi:10.1016/j.molcata.2014.10.027
ABUTARIQ, M., FAISAL, M., & MUNEER, M. (2005). Semiconductor-mediated photocatalysed degradation of two selected azo dye derivatives, amaranth and bismarck brown in aqueous suspension. Journal of Hazardous Materials, 127(1-3), 172-179. doi:10.1016/j.jhazmat.2005.07.001
Ismail, A. A., & Bahnemann, D. W. (2011). Mesostructured Pt/TiO2Nanocomposites as Highly Active Photocatalysts for the Photooxidation of Dichloroacetic Acid. The Journal of Physical Chemistry C, 115(13), 5784-5791. doi:10.1021/jp110959b
Habibi, M. H., & Mardani, M. (2015). Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 785-789. doi:10.1016/j.saa.2014.09.013
Enesca, A., Isac, L., & Duta, A. (2015). Charge carriers injection in tandem semiconductors for dyes mineralization. Applied Catalysis B: Environmental, 162, 352-363. doi:10.1016/j.apcatb.2014.06.059
Fatta-Kassinos, D., Vasquez, M. I., & Kümmerer, K. (2011). Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere, 85(5), 693-709. doi:10.1016/j.chemosphere.2011.06.082
Sclafani, A., Palmisano, L., & Davì, E. (1991). Photocatalytic degradaton of phenol in aqueous polycrystalline TiO2 dispersions: the influence of Fe3+, Fe2+ and Ag+ on the reaction rate. Journal of Photochemistry and Photobiology A: Chemistry, 56(1), 113-123. doi:10.1016/1010-6030(91)80011-6
Yin, H., Wada, Y., Kitamura, T., & Yanagida, S. (2001). Photoreductive Dehalogenation of Halogenated Benzene Derivatives Using ZnS or CdS Nanocrystallites as Photocatalysts. Environmental Science & Technology, 35(1), 227-231. doi:10.1021/es001114d
Davis, A. P., & Huang, C. P. (1990). The removal of substituted phenols by a photocatalytic oxidation process with cadmium sulfide. Water Research, 24(5), 543-550. doi:10.1016/0043-1354(90)90185-9
Abe, R., Shinohara, K., Tanaka, A., Hara, M., Kondo, J. N., & Domen, K. (1997). Preparation of Porous Niobium Oxides by Soft-Chemical Process and Their Photocatalytic Activity. Chemistry of Materials, 9(10), 2179-2184. doi:10.1021/cm970284v
Poongodi, G., Anandan, P., Kumar, R. M., & Jayavel, R. (2015). Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol–gel spin coating method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 148, 237-243. doi:10.1016/j.saa.2015.03.134
Chen, L., Tran. T, T., Huang, C., Li, J., Yuan, L., & Cai, Q. (2013). Synthesis and photocatalytic application of Au/Ag nanoparticle-sensitized ZnO films. Applied Surface Science, 273, 82-88. doi:10.1016/j.apsusc.2013.01.184
Hui, A., Ma, J., Liu, J., Bao, Y., & Zhang, J. (2017). Morphological evolution of Fe doped sea urchin-shaped ZnO nanoparticles with enhanced photocatalytic activity. Journal of Alloys and Compounds, 696, 639-647. doi:10.1016/j.jallcom.2016.10.319
Zhang, X., Chen, Y., Zhang, S., & Qiu, C. (2017). High photocatalytic performance of high concentration Al-doped ZnO nanoparticles. Separation and Purification Technology, 172, 236-241. doi:10.1016/j.seppur.2016.08.016
Thennarasu, G., & Sivasamy, A. (2016). Enhanced visible photocatalytic activity of cotton ball like nano structured Cu doped ZnO for the degradation of organic pollutant. Ecotoxicology and Environmental Safety, 134, 412-420. doi:10.1016/j.ecoenv.2015.10.030
Kuzhalosai, V., Subash, B., Senthilraja, A., Dhatshanamurthi, P., & Shanthi, M. (2013). Synthesis, characterization and photocatalytic properties of SnO2–ZnO composite under UV-A light. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115, 876-882. doi:10.1016/j.saa.2013.06.106
Bizarro, M. (2010). High photocatalytic activity of ZnO and ZnO:Al nanostructured films deposited by spray pyrolysis. Applied Catalysis B: Environmental, 97(1-2), 198-203. doi:10.1016/j.apcatb.2010.03.040
Zhang, P., Hong, R. Y., Chen, Q., & Feng, W. G. (2014). On the electrical conductivity and photocatalytic activity of aluminum-doped zinc oxide. Powder Technology, 253, 360-367. doi:10.1016/j.powtec.2013.12.001
Shi, L., Liang, L., Ma, J., Meng, Y., Zhong, S., Wang, F., & Sun, J. (2014). Highly efficient visible light-driven Ag/AgBr/ZnO composite photocatalyst for degrading Rhodamine B. Ceramics International, 40(2), 3495-3502. doi:10.1016/j.ceramint.2013.09.080
Liu, R., Huang, Y., Xiao, A., & Liu, H. (2010). Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers. Journal of Alloys and Compounds, 503(1), 103-110. doi:10.1016/j.jallcom.2010.04.211
Xu, H., Liu, C., Li, H., Xu, Y., Xia, J., Yin, S., … Wu, X. (2011). Synthesis, characterization and photocatalytic activity of NaNbO3/ZnO heterojunction photocatalysts. Journal of Alloys and Compounds, 509(37), 9157-9163. doi:10.1016/j.jallcom.2011.06.100
Torres Martínez, D. Y., Castanedo Pérez, R., Torres Delgado, G., & Zelaya Ángel, O. (2012). Structural, morphological, optical and photocatalytic characterization of ZnO–SnO2 thin films prepared by the sol–gel technique. Journal of Photochemistry and Photobiology A: Chemistry, 235, 49-55. doi:10.1016/j.jphotochem.2012.03.009
Maolin Zhang, Guoying Sheng, Jiamo Fu, Taicheng An, Xinming Wang, & Xiaohong Hu. (2005). Novel preparation of nanosized ZnO–SnO2 with high photocatalytic activity by homogeneous co-precipitation method. Materials Letters, 59(28), 3641-3644. doi:10.1016/j.matlet.2005.06.037
Lamba, R., Umar, A., Mehta, S. K., & Kumar Kansal, S. (2015). Well-crystalline porous ZnO–SnO2 nanosheets: An effective visible-light driven photocatalyst and highly sensitive smart sensor material. Talanta, 131, 490-498. doi:10.1016/j.talanta.2014.07.096
Zhang, M., An, T., Hu, X., Wang, C., Sheng, G., & Fu, J. (2004). Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide. Applied Catalysis A: General, 260(2), 215-222. doi:10.1016/j.apcata.2003.10.025
Wang, H., Baek, S., Lee, J., & Lim, S. (2009). High photocatalytic activity of silver-loaded ZnO-SnO2 coupled catalysts. Chemical Engineering Journal, 146(3), 355-361. doi:10.1016/j.cej.2008.06.016
Lin, C.-C., & Chiang, Y.-J. (2012). Preparation of coupled ZnO/SnO2 photocatalysts using a rotating packed bed. Chemical Engineering Journal, 181-182, 196-205. doi:10.1016/j.cej.2011.11.062
Cun, W., Jincai, Z., Xinming, W., Bixian, M., Guoying, S., Ping’an, P., & Jiamo, F. (2002). Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Applied Catalysis B: Environmental, 39(3), 269-279. doi:10.1016/s0926-3373(02)00115-7
Hamrouni, A., Moussa, N., Parrino, F., Di Paola, A., Houas, A., & Palmisano, L. (2014). Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites. Journal of Molecular Catalysis A: Chemical, 390, 133-141. doi:10.1016/j.molcata.2014.03.018
Li, C., Ahmed, T., Ma, M., Edvinsson, T., & Zhu, J. (2013). A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties. Applied Catalysis B: Environmental, 138-139, 175-183. doi:10.1016/j.apcatb.2013.02.042
Chen, K.-J., Hung, F.-Y., Lui, T.-S., Chang, S.-P., & Wang, W.-L. (2013). The inter-metallic oxide of ZnO/ITO/ZnO tri-layer films using a heat-induced diffusion mechanism. Applied Surface Science, 273, 598-602. doi:10.1016/j.apsusc.2013.02.084
Behnajady, M. A., & Alizade, B. (2013). Enhancement of TiO2-UV100 nanoparticles photocatalytic activity by Mg impregnation in the removal of a model organic pollutant. Desalination and Water Treatment, 53(3), 689-696. doi:10.1080/19443994.2013.846509
Wang, C., Wang, X., Xu, B.-Q., Zhao, J., Mai, B., Peng, P., … Fu, J. (2004). Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. Journal of Photochemistry and Photobiology A: Chemistry, 168(1-2), 47-52. doi:10.1016/j.jphotochem.2004.05.014
Spence, W. (1967). The uv Absorption Edge of Tin Oxide Thin Films. Journal of Applied Physics, 38(9), 3767-3770. doi:10.1063/1.1710208
Hagfeldt, A., & Graetzel, M. (1995). Light-Induced Redox Reactions in Nanocrystalline Systems. Chemical Reviews, 95(1), 49-68. doi:10.1021/cr00033a003
Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004
Seftel, E. M., Puscasu, M. C., Mertens, M., Cool, P., & Carja, G. (2015). Fabrication of CeO2/LDHs self-assemblies with enhanced photocatalytic performance: A case study on ZnSn-LDH matrix. Applied Catalysis B: Environmental, 164, 251-260. doi:10.1016/j.apcatb.2014.09.035
Hamrouni, A., Lachheb, H., & Houas, A. (2013). Synthesis, characterization and photocatalytic activity of ZnO-SnO2 nanocomposites. Materials Science and Engineering: B, 178(20), 1371-1379. doi:10.1016/j.mseb.2013.08.008
Chen, L.-C., Tu, Y.-J., Wang, Y.-S., Kan, R.-S., & Huang, C.-M. (2008). Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. Journal of Photochemistry and Photobiology A: Chemistry, 199(2-3), 170-178. doi:10.1016/j.jphotochem.2008.05.022
Chowdhury, I. H., Bose, P., & Naskar, M. K. (2016). A facile synthesis of mesoporous titania cubes and their photocatalytic application. Journal of Alloys and Compounds, 668, 56-64. doi:10.1016/j.jallcom.2016.01.167
Comparelli, R., Fanizza, E., Curri, M. L., Cozzoli, P. D., Mascolo, G., & Agostiano, A. (2005). UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates. Applied Catalysis B: Environmental, 60(1-2), 1-11. doi:10.1016/j.apcatb.2005.02.013
Seftel, E. M., Popovici, E., Mertens, M., Stefaniak, E. A., Van Grieken, R., Cool, P., & Vansant, E. F. (2008). SnIV-containing layered double hydroxides as precursors for nano-sized ZnO/SnO2 photocatalysts. Applied Catalysis B: Environmental, 84(3-4), 699-705. doi:10.1016/j.apcatb.2008.06.006
[-]