- -

Synthesis and characterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis and characterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye

Mostrar el registro completo del ítem

Verma, N.; Yadav, S.; Marí, B.; Mittal, A.; Jindal, J. (2018). Synthesis and characterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye. Transactions of the Indian Ceramic Society. 77(1):1-7. https://doi.org/10.1080/0371750X.2017.1417059

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145395

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis and characterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye
Autor: Verma, Naveen Yadav, Suprabha Marí, B. Mittal, Anuj Jindal, Jitender
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] A series of coupled ZnO-SnO2 photocatalyst was successfully synthesized in the Zn:Sn molar ratio of 20:1, 10:1, 5:1 and 2:1 via co-precipitation method followed by calcination at different temperatures. The synthesized ...[+]
Palabras clave: Coupled , Co-precipitation , Photocatalysis
Derechos de uso: Cerrado
Fuente:
Transactions of the Indian Ceramic Society. (issn: 0371-750X )
DOI: 10.1080/0371750X.2017.1417059
Editorial:
Taylor & Francis
Versión del editor: https://doi.org/10.1080/0371750X.2017.1417059
Código del Proyecto:
info:eu-repo/grantAgreement/Radha Krishanan Foundation Fund//DSW%2F16%2F322/
info:eu-repo/grantAgreement/MINECO//ENE2016-77798-C4-2-R/ES/APROVECHAMIENTO DE LA LUZ SOLAR CON PROCESOS DE DOS FOTONES-TF/
Agradecimientos:
Naveen Verma thanks the M. D. University, Rohtak, India for providing final assistance under Radha Krishanan foundation fund (DSW/16/322) and Suprabha Yadav thanks University Grant Commission, New Delhi, India for the award ...[+]
Tipo: Artículo

References

Faisal, M., Ibrahim, A. A., Harraz, F. A., Bouzid, H., Al-Assiri, M. S., & Ismail, A. A. (2015). SnO2 doped ZnO nanostructures for highly efficient photocatalyst. Journal of Molecular Catalysis A: Chemical, 397, 19-25. doi:10.1016/j.molcata.2014.10.027

ABUTARIQ, M., FAISAL, M., & MUNEER, M. (2005). Semiconductor-mediated photocatalysed degradation of two selected azo dye derivatives, amaranth and bismarck brown in aqueous suspension. Journal of Hazardous Materials, 127(1-3), 172-179. doi:10.1016/j.jhazmat.2005.07.001

Ismail, A. A., & Bahnemann, D. W. (2011). Mesostructured Pt/TiO2Nanocomposites as Highly Active Photocatalysts for the Photooxidation of Dichloroacetic Acid. The Journal of Physical Chemistry C, 115(13), 5784-5791. doi:10.1021/jp110959b [+]
Faisal, M., Ibrahim, A. A., Harraz, F. A., Bouzid, H., Al-Assiri, M. S., & Ismail, A. A. (2015). SnO2 doped ZnO nanostructures for highly efficient photocatalyst. Journal of Molecular Catalysis A: Chemical, 397, 19-25. doi:10.1016/j.molcata.2014.10.027

ABUTARIQ, M., FAISAL, M., & MUNEER, M. (2005). Semiconductor-mediated photocatalysed degradation of two selected azo dye derivatives, amaranth and bismarck brown in aqueous suspension. Journal of Hazardous Materials, 127(1-3), 172-179. doi:10.1016/j.jhazmat.2005.07.001

Ismail, A. A., & Bahnemann, D. W. (2011). Mesostructured Pt/TiO2Nanocomposites as Highly Active Photocatalysts for the Photooxidation of Dichloroacetic Acid. The Journal of Physical Chemistry C, 115(13), 5784-5791. doi:10.1021/jp110959b

Habibi, M. H., & Mardani, M. (2015). Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 785-789. doi:10.1016/j.saa.2014.09.013

Enesca, A., Isac, L., & Duta, A. (2015). Charge carriers injection in tandem semiconductors for dyes mineralization. Applied Catalysis B: Environmental, 162, 352-363. doi:10.1016/j.apcatb.2014.06.059

Fatta-Kassinos, D., Vasquez, M. I., & Kümmerer, K. (2011). Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere, 85(5), 693-709. doi:10.1016/j.chemosphere.2011.06.082

Sclafani, A., Palmisano, L., & Davì, E. (1991). Photocatalytic degradaton of phenol in aqueous polycrystalline TiO2 dispersions: the influence of Fe3+, Fe2+ and Ag+ on the reaction rate. Journal of Photochemistry and Photobiology A: Chemistry, 56(1), 113-123. doi:10.1016/1010-6030(91)80011-6

Yin, H., Wada, Y., Kitamura, T., & Yanagida, S. (2001). Photoreductive Dehalogenation of Halogenated Benzene Derivatives Using ZnS or CdS Nanocrystallites as Photocatalysts. Environmental Science & Technology, 35(1), 227-231. doi:10.1021/es001114d

Davis, A. P., & Huang, C. P. (1990). The removal of substituted phenols by a photocatalytic oxidation process with cadmium sulfide. Water Research, 24(5), 543-550. doi:10.1016/0043-1354(90)90185-9

Abe, R., Shinohara, K., Tanaka, A., Hara, M., Kondo, J. N., & Domen, K. (1997). Preparation of Porous Niobium Oxides by Soft-Chemical Process and Their Photocatalytic Activity. Chemistry of Materials, 9(10), 2179-2184. doi:10.1021/cm970284v

Poongodi, G., Anandan, P., Kumar, R. M., & Jayavel, R. (2015). Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol–gel spin coating method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 148, 237-243. doi:10.1016/j.saa.2015.03.134

Chen, L., Tran. T, T., Huang, C., Li, J., Yuan, L., & Cai, Q. (2013). Synthesis and photocatalytic application of Au/Ag nanoparticle-sensitized ZnO films. Applied Surface Science, 273, 82-88. doi:10.1016/j.apsusc.2013.01.184

Hui, A., Ma, J., Liu, J., Bao, Y., & Zhang, J. (2017). Morphological evolution of Fe doped sea urchin-shaped ZnO nanoparticles with enhanced photocatalytic activity. Journal of Alloys and Compounds, 696, 639-647. doi:10.1016/j.jallcom.2016.10.319

Zhang, X., Chen, Y., Zhang, S., & Qiu, C. (2017). High photocatalytic performance of high concentration Al-doped ZnO nanoparticles. Separation and Purification Technology, 172, 236-241. doi:10.1016/j.seppur.2016.08.016

Thennarasu, G., & Sivasamy, A. (2016). Enhanced visible photocatalytic activity of cotton ball like nano structured Cu doped ZnO for the degradation of organic pollutant. Ecotoxicology and Environmental Safety, 134, 412-420. doi:10.1016/j.ecoenv.2015.10.030

Kuzhalosai, V., Subash, B., Senthilraja, A., Dhatshanamurthi, P., & Shanthi, M. (2013). Synthesis, characterization and photocatalytic properties of SnO2–ZnO composite under UV-A light. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115, 876-882. doi:10.1016/j.saa.2013.06.106

Bizarro, M. (2010). High photocatalytic activity of ZnO and ZnO:Al nanostructured films deposited by spray pyrolysis. Applied Catalysis B: Environmental, 97(1-2), 198-203. doi:10.1016/j.apcatb.2010.03.040

Zhang, P., Hong, R. Y., Chen, Q., & Feng, W. G. (2014). On the electrical conductivity and photocatalytic activity of aluminum-doped zinc oxide. Powder Technology, 253, 360-367. doi:10.1016/j.powtec.2013.12.001

Shi, L., Liang, L., Ma, J., Meng, Y., Zhong, S., Wang, F., & Sun, J. (2014). Highly efficient visible light-driven Ag/AgBr/ZnO composite photocatalyst for degrading Rhodamine B. Ceramics International, 40(2), 3495-3502. doi:10.1016/j.ceramint.2013.09.080

Liu, R., Huang, Y., Xiao, A., & Liu, H. (2010). Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers. Journal of Alloys and Compounds, 503(1), 103-110. doi:10.1016/j.jallcom.2010.04.211

Xu, H., Liu, C., Li, H., Xu, Y., Xia, J., Yin, S., … Wu, X. (2011). Synthesis, characterization and photocatalytic activity of NaNbO3/ZnO heterojunction photocatalysts. Journal of Alloys and Compounds, 509(37), 9157-9163. doi:10.1016/j.jallcom.2011.06.100

Torres Martínez, D. Y., Castanedo Pérez, R., Torres Delgado, G., & Zelaya Ángel, O. (2012). Structural, morphological, optical and photocatalytic characterization of ZnO–SnO2 thin films prepared by the sol–gel technique. Journal of Photochemistry and Photobiology A: Chemistry, 235, 49-55. doi:10.1016/j.jphotochem.2012.03.009

Maolin Zhang, Guoying Sheng, Jiamo Fu, Taicheng An, Xinming Wang, & Xiaohong Hu. (2005). Novel preparation of nanosized ZnO–SnO2 with high photocatalytic activity by homogeneous co-precipitation method. Materials Letters, 59(28), 3641-3644. doi:10.1016/j.matlet.2005.06.037

Lamba, R., Umar, A., Mehta, S. K., & Kumar Kansal, S. (2015). Well-crystalline porous ZnO–SnO2 nanosheets: An effective visible-light driven photocatalyst and highly sensitive smart sensor material. Talanta, 131, 490-498. doi:10.1016/j.talanta.2014.07.096

Zhang, M., An, T., Hu, X., Wang, C., Sheng, G., & Fu, J. (2004). Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide. Applied Catalysis A: General, 260(2), 215-222. doi:10.1016/j.apcata.2003.10.025

Wang, H., Baek, S., Lee, J., & Lim, S. (2009). High photocatalytic activity of silver-loaded ZnO-SnO2 coupled catalysts. Chemical Engineering Journal, 146(3), 355-361. doi:10.1016/j.cej.2008.06.016

Lin, C.-C., & Chiang, Y.-J. (2012). Preparation of coupled ZnO/SnO2 photocatalysts using a rotating packed bed. Chemical Engineering Journal, 181-182, 196-205. doi:10.1016/j.cej.2011.11.062

Cun, W., Jincai, Z., Xinming, W., Bixian, M., Guoying, S., Ping’an, P., & Jiamo, F. (2002). Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Applied Catalysis B: Environmental, 39(3), 269-279. doi:10.1016/s0926-3373(02)00115-7

Hamrouni, A., Moussa, N., Parrino, F., Di Paola, A., Houas, A., & Palmisano, L. (2014). Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites. Journal of Molecular Catalysis A: Chemical, 390, 133-141. doi:10.1016/j.molcata.2014.03.018

Li, C., Ahmed, T., Ma, M., Edvinsson, T., & Zhu, J. (2013). A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties. Applied Catalysis B: Environmental, 138-139, 175-183. doi:10.1016/j.apcatb.2013.02.042

Chen, K.-J., Hung, F.-Y., Lui, T.-S., Chang, S.-P., & Wang, W.-L. (2013). The inter-metallic oxide of ZnO/ITO/ZnO tri-layer films using a heat-induced diffusion mechanism. Applied Surface Science, 273, 598-602. doi:10.1016/j.apsusc.2013.02.084

Behnajady, M. A., & Alizade, B. (2013). Enhancement of TiO2-UV100 nanoparticles photocatalytic activity by Mg impregnation in the removal of a model organic pollutant. Desalination and Water Treatment, 53(3), 689-696. doi:10.1080/19443994.2013.846509

Wang, C., Wang, X., Xu, B.-Q., Zhao, J., Mai, B., Peng, P., … Fu, J. (2004). Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. Journal of Photochemistry and Photobiology A: Chemistry, 168(1-2), 47-52. doi:10.1016/j.jphotochem.2004.05.014

Spence, W. (1967). The uv Absorption Edge of Tin Oxide Thin Films. Journal of Applied Physics, 38(9), 3767-3770. doi:10.1063/1.1710208

Hagfeldt, A., & Graetzel, M. (1995). Light-Induced Redox Reactions in Nanocrystalline Systems. Chemical Reviews, 95(1), 49-68. doi:10.1021/cr00033a003

Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004

Seftel, E. M., Puscasu, M. C., Mertens, M., Cool, P., & Carja, G. (2015). Fabrication of CeO2/LDHs self-assemblies with enhanced photocatalytic performance: A case study on ZnSn-LDH matrix. Applied Catalysis B: Environmental, 164, 251-260. doi:10.1016/j.apcatb.2014.09.035

Hamrouni, A., Lachheb, H., & Houas, A. (2013). Synthesis, characterization and photocatalytic activity of ZnO-SnO2 nanocomposites. Materials Science and Engineering: B, 178(20), 1371-1379. doi:10.1016/j.mseb.2013.08.008

Chen, L.-C., Tu, Y.-J., Wang, Y.-S., Kan, R.-S., & Huang, C.-M. (2008). Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. Journal of Photochemistry and Photobiology A: Chemistry, 199(2-3), 170-178. doi:10.1016/j.jphotochem.2008.05.022

Chowdhury, I. H., Bose, P., & Naskar, M. K. (2016). A facile synthesis of mesoporous titania cubes and their photocatalytic application. Journal of Alloys and Compounds, 668, 56-64. doi:10.1016/j.jallcom.2016.01.167

Comparelli, R., Fanizza, E., Curri, M. L., Cozzoli, P. D., Mascolo, G., & Agostiano, A. (2005). UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates. Applied Catalysis B: Environmental, 60(1-2), 1-11. doi:10.1016/j.apcatb.2005.02.013

Seftel, E. M., Popovici, E., Mertens, M., Stefaniak, E. A., Van Grieken, R., Cool, P., & Vansant, E. F. (2008). SnIV-containing layered double hydroxides as precursors for nano-sized ZnO/SnO2 photocatalysts. Applied Catalysis B: Environmental, 84(3-4), 699-705. doi:10.1016/j.apcatb.2008.06.006

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem