Mostrar el registro sencillo del ítem
dc.contributor.author | Verma, Naveen | es_ES |
dc.contributor.author | Yadav, Suprabha | es_ES |
dc.contributor.author | Marí, B. | es_ES |
dc.contributor.author | Mittal, Anuj | es_ES |
dc.contributor.author | Jindal, Jitender | es_ES |
dc.date.accessioned | 2020-06-05T03:32:09Z | |
dc.date.available | 2020-06-05T03:32:09Z | |
dc.date.issued | 2018-03-05 | es_ES |
dc.identifier.issn | 0371-750X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145395 | |
dc.description.abstract | [EN] A series of coupled ZnO-SnO2 photocatalyst was successfully synthesized in the Zn:Sn molar ratio of 20:1, 10:1, 5:1 and 2:1 via co-precipitation method followed by calcination at different temperatures. The synthesized materials were characterized by X-ray diffraction, diffuse reflectance spectra, scanning electron microscope and transmission electron microscope. Photocatalytic activitiy of synthesized materials was applied for the degradation of cibacron red dye in aqueous solution under UV-A light irradiation. Experimental results revealed that the coupled ZnO-SnO2 photocatalyst with Zn:Sn molar ratio 10:1, calcined at 600 degrees C for 1 h was the most efficient photocatalyst among synthesized samples for the degradation of cibacron red. Superoxide anion radical (O-center dot(2)-) was found to be the prominent active species responsible for degradation comparative to hole (h(+)), hydroxyl radical ((OH)-O-center dot). | es_ES |
dc.description.sponsorship | Naveen Verma thanks the M. D. University, Rohtak, India for providing final assistance under Radha Krishanan foundation fund (DSW/16/322) and Suprabha Yadav thanks University Grant Commission, New Delhi, India for the award of Junior Research Fellowship. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Transactions of the Indian Ceramic Society | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Coupled | es_ES |
dc.subject | Co-precipitation | es_ES |
dc.subject | Photocatalysis | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Synthesis and characterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/0371750X.2017.1417059 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Radha Krishanan Foundation Fund//DSW%2F16%2F322/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2016-77798-C4-2-R/ES/APROVECHAMIENTO DE LA LUZ SOLAR CON PROCESOS DE DOS FOTONES-TF/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Verma, N.; Yadav, S.; Marí, B.; Mittal, A.; Jindal, J. (2018). Synthesis and characterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye. Transactions of the Indian Ceramic Society. 77(1):1-7. https://doi.org/10.1080/0371750X.2017.1417059 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/0371750X.2017.1417059 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 7 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 77 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\386324 | es_ES |
dc.contributor.funder | Radha Krishanan Foundation Fund | es_ES |
dc.contributor.funder | University Grants Commission, India | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Faisal, M., Ibrahim, A. A., Harraz, F. A., Bouzid, H., Al-Assiri, M. S., & Ismail, A. A. (2015). SnO2 doped ZnO nanostructures for highly efficient photocatalyst. Journal of Molecular Catalysis A: Chemical, 397, 19-25. doi:10.1016/j.molcata.2014.10.027 | es_ES |
dc.description.references | ABUTARIQ, M., FAISAL, M., & MUNEER, M. (2005). Semiconductor-mediated photocatalysed degradation of two selected azo dye derivatives, amaranth and bismarck brown in aqueous suspension. Journal of Hazardous Materials, 127(1-3), 172-179. doi:10.1016/j.jhazmat.2005.07.001 | es_ES |
dc.description.references | Ismail, A. A., & Bahnemann, D. W. (2011). Mesostructured Pt/TiO2Nanocomposites as Highly Active Photocatalysts for the Photooxidation of Dichloroacetic Acid. The Journal of Physical Chemistry C, 115(13), 5784-5791. doi:10.1021/jp110959b | es_ES |
dc.description.references | Habibi, M. H., & Mardani, M. (2015). Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 785-789. doi:10.1016/j.saa.2014.09.013 | es_ES |
dc.description.references | Enesca, A., Isac, L., & Duta, A. (2015). Charge carriers injection in tandem semiconductors for dyes mineralization. Applied Catalysis B: Environmental, 162, 352-363. doi:10.1016/j.apcatb.2014.06.059 | es_ES |
dc.description.references | Fatta-Kassinos, D., Vasquez, M. I., & Kümmerer, K. (2011). Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere, 85(5), 693-709. doi:10.1016/j.chemosphere.2011.06.082 | es_ES |
dc.description.references | Sclafani, A., Palmisano, L., & Davì, E. (1991). Photocatalytic degradaton of phenol in aqueous polycrystalline TiO2 dispersions: the influence of Fe3+, Fe2+ and Ag+ on the reaction rate. Journal of Photochemistry and Photobiology A: Chemistry, 56(1), 113-123. doi:10.1016/1010-6030(91)80011-6 | es_ES |
dc.description.references | Yin, H., Wada, Y., Kitamura, T., & Yanagida, S. (2001). Photoreductive Dehalogenation of Halogenated Benzene Derivatives Using ZnS or CdS Nanocrystallites as Photocatalysts. Environmental Science & Technology, 35(1), 227-231. doi:10.1021/es001114d | es_ES |
dc.description.references | Davis, A. P., & Huang, C. P. (1990). The removal of substituted phenols by a photocatalytic oxidation process with cadmium sulfide. Water Research, 24(5), 543-550. doi:10.1016/0043-1354(90)90185-9 | es_ES |
dc.description.references | Abe, R., Shinohara, K., Tanaka, A., Hara, M., Kondo, J. N., & Domen, K. (1997). Preparation of Porous Niobium Oxides by Soft-Chemical Process and Their Photocatalytic Activity. Chemistry of Materials, 9(10), 2179-2184. doi:10.1021/cm970284v | es_ES |
dc.description.references | Poongodi, G., Anandan, P., Kumar, R. M., & Jayavel, R. (2015). Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol–gel spin coating method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 148, 237-243. doi:10.1016/j.saa.2015.03.134 | es_ES |
dc.description.references | Chen, L., Tran. T, T., Huang, C., Li, J., Yuan, L., & Cai, Q. (2013). Synthesis and photocatalytic application of Au/Ag nanoparticle-sensitized ZnO films. Applied Surface Science, 273, 82-88. doi:10.1016/j.apsusc.2013.01.184 | es_ES |
dc.description.references | Hui, A., Ma, J., Liu, J., Bao, Y., & Zhang, J. (2017). Morphological evolution of Fe doped sea urchin-shaped ZnO nanoparticles with enhanced photocatalytic activity. Journal of Alloys and Compounds, 696, 639-647. doi:10.1016/j.jallcom.2016.10.319 | es_ES |
dc.description.references | Zhang, X., Chen, Y., Zhang, S., & Qiu, C. (2017). High photocatalytic performance of high concentration Al-doped ZnO nanoparticles. Separation and Purification Technology, 172, 236-241. doi:10.1016/j.seppur.2016.08.016 | es_ES |
dc.description.references | Thennarasu, G., & Sivasamy, A. (2016). Enhanced visible photocatalytic activity of cotton ball like nano structured Cu doped ZnO for the degradation of organic pollutant. Ecotoxicology and Environmental Safety, 134, 412-420. doi:10.1016/j.ecoenv.2015.10.030 | es_ES |
dc.description.references | Kuzhalosai, V., Subash, B., Senthilraja, A., Dhatshanamurthi, P., & Shanthi, M. (2013). Synthesis, characterization and photocatalytic properties of SnO2–ZnO composite under UV-A light. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115, 876-882. doi:10.1016/j.saa.2013.06.106 | es_ES |
dc.description.references | Bizarro, M. (2010). High photocatalytic activity of ZnO and ZnO:Al nanostructured films deposited by spray pyrolysis. Applied Catalysis B: Environmental, 97(1-2), 198-203. doi:10.1016/j.apcatb.2010.03.040 | es_ES |
dc.description.references | Zhang, P., Hong, R. Y., Chen, Q., & Feng, W. G. (2014). On the electrical conductivity and photocatalytic activity of aluminum-doped zinc oxide. Powder Technology, 253, 360-367. doi:10.1016/j.powtec.2013.12.001 | es_ES |
dc.description.references | Shi, L., Liang, L., Ma, J., Meng, Y., Zhong, S., Wang, F., & Sun, J. (2014). Highly efficient visible light-driven Ag/AgBr/ZnO composite photocatalyst for degrading Rhodamine B. Ceramics International, 40(2), 3495-3502. doi:10.1016/j.ceramint.2013.09.080 | es_ES |
dc.description.references | Liu, R., Huang, Y., Xiao, A., & Liu, H. (2010). Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers. Journal of Alloys and Compounds, 503(1), 103-110. doi:10.1016/j.jallcom.2010.04.211 | es_ES |
dc.description.references | Xu, H., Liu, C., Li, H., Xu, Y., Xia, J., Yin, S., … Wu, X. (2011). Synthesis, characterization and photocatalytic activity of NaNbO3/ZnO heterojunction photocatalysts. Journal of Alloys and Compounds, 509(37), 9157-9163. doi:10.1016/j.jallcom.2011.06.100 | es_ES |
dc.description.references | Torres Martínez, D. Y., Castanedo Pérez, R., Torres Delgado, G., & Zelaya Ángel, O. (2012). Structural, morphological, optical and photocatalytic characterization of ZnO–SnO2 thin films prepared by the sol–gel technique. Journal of Photochemistry and Photobiology A: Chemistry, 235, 49-55. doi:10.1016/j.jphotochem.2012.03.009 | es_ES |
dc.description.references | Maolin Zhang, Guoying Sheng, Jiamo Fu, Taicheng An, Xinming Wang, & Xiaohong Hu. (2005). Novel preparation of nanosized ZnO–SnO2 with high photocatalytic activity by homogeneous co-precipitation method. Materials Letters, 59(28), 3641-3644. doi:10.1016/j.matlet.2005.06.037 | es_ES |
dc.description.references | Lamba, R., Umar, A., Mehta, S. K., & Kumar Kansal, S. (2015). Well-crystalline porous ZnO–SnO2 nanosheets: An effective visible-light driven photocatalyst and highly sensitive smart sensor material. Talanta, 131, 490-498. doi:10.1016/j.talanta.2014.07.096 | es_ES |
dc.description.references | Zhang, M., An, T., Hu, X., Wang, C., Sheng, G., & Fu, J. (2004). Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide. Applied Catalysis A: General, 260(2), 215-222. doi:10.1016/j.apcata.2003.10.025 | es_ES |
dc.description.references | Wang, H., Baek, S., Lee, J., & Lim, S. (2009). High photocatalytic activity of silver-loaded ZnO-SnO2 coupled catalysts. Chemical Engineering Journal, 146(3), 355-361. doi:10.1016/j.cej.2008.06.016 | es_ES |
dc.description.references | Lin, C.-C., & Chiang, Y.-J. (2012). Preparation of coupled ZnO/SnO2 photocatalysts using a rotating packed bed. Chemical Engineering Journal, 181-182, 196-205. doi:10.1016/j.cej.2011.11.062 | es_ES |
dc.description.references | Cun, W., Jincai, Z., Xinming, W., Bixian, M., Guoying, S., Ping’an, P., & Jiamo, F. (2002). Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Applied Catalysis B: Environmental, 39(3), 269-279. doi:10.1016/s0926-3373(02)00115-7 | es_ES |
dc.description.references | Hamrouni, A., Moussa, N., Parrino, F., Di Paola, A., Houas, A., & Palmisano, L. (2014). Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites. Journal of Molecular Catalysis A: Chemical, 390, 133-141. doi:10.1016/j.molcata.2014.03.018 | es_ES |
dc.description.references | Li, C., Ahmed, T., Ma, M., Edvinsson, T., & Zhu, J. (2013). A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties. Applied Catalysis B: Environmental, 138-139, 175-183. doi:10.1016/j.apcatb.2013.02.042 | es_ES |
dc.description.references | Chen, K.-J., Hung, F.-Y., Lui, T.-S., Chang, S.-P., & Wang, W.-L. (2013). The inter-metallic oxide of ZnO/ITO/ZnO tri-layer films using a heat-induced diffusion mechanism. Applied Surface Science, 273, 598-602. doi:10.1016/j.apsusc.2013.02.084 | es_ES |
dc.description.references | Behnajady, M. A., & Alizade, B. (2013). Enhancement of TiO2-UV100 nanoparticles photocatalytic activity by Mg impregnation in the removal of a model organic pollutant. Desalination and Water Treatment, 53(3), 689-696. doi:10.1080/19443994.2013.846509 | es_ES |
dc.description.references | Wang, C., Wang, X., Xu, B.-Q., Zhao, J., Mai, B., Peng, P., … Fu, J. (2004). Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. Journal of Photochemistry and Photobiology A: Chemistry, 168(1-2), 47-52. doi:10.1016/j.jphotochem.2004.05.014 | es_ES |
dc.description.references | Spence, W. (1967). The uv Absorption Edge of Tin Oxide Thin Films. Journal of Applied Physics, 38(9), 3767-3770. doi:10.1063/1.1710208 | es_ES |
dc.description.references | Hagfeldt, A., & Graetzel, M. (1995). Light-Induced Redox Reactions in Nanocrystalline Systems. Chemical Reviews, 95(1), 49-68. doi:10.1021/cr00033a003 | es_ES |
dc.description.references | Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004 | es_ES |
dc.description.references | Seftel, E. M., Puscasu, M. C., Mertens, M., Cool, P., & Carja, G. (2015). Fabrication of CeO2/LDHs self-assemblies with enhanced photocatalytic performance: A case study on ZnSn-LDH matrix. Applied Catalysis B: Environmental, 164, 251-260. doi:10.1016/j.apcatb.2014.09.035 | es_ES |
dc.description.references | Hamrouni, A., Lachheb, H., & Houas, A. (2013). Synthesis, characterization and photocatalytic activity of ZnO-SnO2 nanocomposites. Materials Science and Engineering: B, 178(20), 1371-1379. doi:10.1016/j.mseb.2013.08.008 | es_ES |
dc.description.references | Chen, L.-C., Tu, Y.-J., Wang, Y.-S., Kan, R.-S., & Huang, C.-M. (2008). Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. Journal of Photochemistry and Photobiology A: Chemistry, 199(2-3), 170-178. doi:10.1016/j.jphotochem.2008.05.022 | es_ES |
dc.description.references | Chowdhury, I. H., Bose, P., & Naskar, M. K. (2016). A facile synthesis of mesoporous titania cubes and their photocatalytic application. Journal of Alloys and Compounds, 668, 56-64. doi:10.1016/j.jallcom.2016.01.167 | es_ES |
dc.description.references | Comparelli, R., Fanizza, E., Curri, M. L., Cozzoli, P. D., Mascolo, G., & Agostiano, A. (2005). UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates. Applied Catalysis B: Environmental, 60(1-2), 1-11. doi:10.1016/j.apcatb.2005.02.013 | es_ES |
dc.description.references | Seftel, E. M., Popovici, E., Mertens, M., Stefaniak, E. A., Van Grieken, R., Cool, P., & Vansant, E. F. (2008). SnIV-containing layered double hydroxides as precursors for nano-sized ZnO/SnO2 photocatalysts. Applied Catalysis B: Environmental, 84(3-4), 699-705. doi:10.1016/j.apcatb.2008.06.006 | es_ES |