- -

Synthesis and characterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis and characterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Verma, Naveen es_ES
dc.contributor.author Yadav, Suprabha es_ES
dc.contributor.author Marí, B. es_ES
dc.contributor.author Mittal, Anuj es_ES
dc.contributor.author Jindal, Jitender es_ES
dc.date.accessioned 2020-06-05T03:32:09Z
dc.date.available 2020-06-05T03:32:09Z
dc.date.issued 2018-03-05 es_ES
dc.identifier.issn 0371-750X es_ES
dc.identifier.uri http://hdl.handle.net/10251/145395
dc.description.abstract [EN] A series of coupled ZnO-SnO2 photocatalyst was successfully synthesized in the Zn:Sn molar ratio of 20:1, 10:1, 5:1 and 2:1 via co-precipitation method followed by calcination at different temperatures. The synthesized materials were characterized by X-ray diffraction, diffuse reflectance spectra, scanning electron microscope and transmission electron microscope. Photocatalytic activitiy of synthesized materials was applied for the degradation of cibacron red dye in aqueous solution under UV-A light irradiation. Experimental results revealed that the coupled ZnO-SnO2 photocatalyst with Zn:Sn molar ratio 10:1, calcined at 600 degrees C for 1 h was the most efficient photocatalyst among synthesized samples for the degradation of cibacron red. Superoxide anion radical (O-center dot(2)-) was found to be the prominent active species responsible for degradation comparative to hole (h(+)), hydroxyl radical ((OH)-O-center dot). es_ES
dc.description.sponsorship Naveen Verma thanks the M. D. University, Rohtak, India for providing final assistance under Radha Krishanan foundation fund (DSW/16/322) and Suprabha Yadav thanks University Grant Commission, New Delhi, India for the award of Junior Research Fellowship. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Transactions of the Indian Ceramic Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Coupled es_ES
dc.subject Co-precipitation es_ES
dc.subject Photocatalysis es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Synthesis and characterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/0371750X.2017.1417059 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Radha Krishanan Foundation Fund//DSW%2F16%2F322/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2016-77798-C4-2-R/ES/APROVECHAMIENTO DE LA LUZ SOLAR CON PROCESOS DE DOS FOTONES-TF/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Verma, N.; Yadav, S.; Marí, B.; Mittal, A.; Jindal, J. (2018). Synthesis and characterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye. Transactions of the Indian Ceramic Society. 77(1):1-7. https://doi.org/10.1080/0371750X.2017.1417059 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/0371750X.2017.1417059 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 77 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\386324 es_ES
dc.contributor.funder Radha Krishanan Foundation Fund es_ES
dc.contributor.funder University Grants Commission, India es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Faisal, M., Ibrahim, A. A., Harraz, F. A., Bouzid, H., Al-Assiri, M. S., & Ismail, A. A. (2015). SnO2 doped ZnO nanostructures for highly efficient photocatalyst. Journal of Molecular Catalysis A: Chemical, 397, 19-25. doi:10.1016/j.molcata.2014.10.027 es_ES
dc.description.references ABUTARIQ, M., FAISAL, M., & MUNEER, M. (2005). Semiconductor-mediated photocatalysed degradation of two selected azo dye derivatives, amaranth and bismarck brown in aqueous suspension. Journal of Hazardous Materials, 127(1-3), 172-179. doi:10.1016/j.jhazmat.2005.07.001 es_ES
dc.description.references Ismail, A. A., & Bahnemann, D. W. (2011). Mesostructured Pt/TiO2Nanocomposites as Highly Active Photocatalysts for the Photooxidation of Dichloroacetic Acid. The Journal of Physical Chemistry C, 115(13), 5784-5791. doi:10.1021/jp110959b es_ES
dc.description.references Habibi, M. H., & Mardani, M. (2015). Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 785-789. doi:10.1016/j.saa.2014.09.013 es_ES
dc.description.references Enesca, A., Isac, L., & Duta, A. (2015). Charge carriers injection in tandem semiconductors for dyes mineralization. Applied Catalysis B: Environmental, 162, 352-363. doi:10.1016/j.apcatb.2014.06.059 es_ES
dc.description.references Fatta-Kassinos, D., Vasquez, M. I., & Kümmerer, K. (2011). Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere, 85(5), 693-709. doi:10.1016/j.chemosphere.2011.06.082 es_ES
dc.description.references Sclafani, A., Palmisano, L., & Davì, E. (1991). Photocatalytic degradaton of phenol in aqueous polycrystalline TiO2 dispersions: the influence of Fe3+, Fe2+ and Ag+ on the reaction rate. Journal of Photochemistry and Photobiology A: Chemistry, 56(1), 113-123. doi:10.1016/1010-6030(91)80011-6 es_ES
dc.description.references Yin, H., Wada, Y., Kitamura, T., & Yanagida, S. (2001). Photoreductive Dehalogenation of Halogenated Benzene Derivatives Using ZnS or CdS Nanocrystallites as Photocatalysts. Environmental Science & Technology, 35(1), 227-231. doi:10.1021/es001114d es_ES
dc.description.references Davis, A. P., & Huang, C. P. (1990). The removal of substituted phenols by a photocatalytic oxidation process with cadmium sulfide. Water Research, 24(5), 543-550. doi:10.1016/0043-1354(90)90185-9 es_ES
dc.description.references Abe, R., Shinohara, K., Tanaka, A., Hara, M., Kondo, J. N., & Domen, K. (1997). Preparation of Porous Niobium Oxides by Soft-Chemical Process and Their Photocatalytic Activity. Chemistry of Materials, 9(10), 2179-2184. doi:10.1021/cm970284v es_ES
dc.description.references Poongodi, G., Anandan, P., Kumar, R. M., & Jayavel, R. (2015). Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol–gel spin coating method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 148, 237-243. doi:10.1016/j.saa.2015.03.134 es_ES
dc.description.references Chen, L., Tran. T, T., Huang, C., Li, J., Yuan, L., & Cai, Q. (2013). Synthesis and photocatalytic application of Au/Ag nanoparticle-sensitized ZnO films. Applied Surface Science, 273, 82-88. doi:10.1016/j.apsusc.2013.01.184 es_ES
dc.description.references Hui, A., Ma, J., Liu, J., Bao, Y., & Zhang, J. (2017). Morphological evolution of Fe doped sea urchin-shaped ZnO nanoparticles with enhanced photocatalytic activity. Journal of Alloys and Compounds, 696, 639-647. doi:10.1016/j.jallcom.2016.10.319 es_ES
dc.description.references Zhang, X., Chen, Y., Zhang, S., & Qiu, C. (2017). High photocatalytic performance of high concentration Al-doped ZnO nanoparticles. Separation and Purification Technology, 172, 236-241. doi:10.1016/j.seppur.2016.08.016 es_ES
dc.description.references Thennarasu, G., & Sivasamy, A. (2016). Enhanced visible photocatalytic activity of cotton ball like nano structured Cu doped ZnO for the degradation of organic pollutant. Ecotoxicology and Environmental Safety, 134, 412-420. doi:10.1016/j.ecoenv.2015.10.030 es_ES
dc.description.references Kuzhalosai, V., Subash, B., Senthilraja, A., Dhatshanamurthi, P., & Shanthi, M. (2013). Synthesis, characterization and photocatalytic properties of SnO2–ZnO composite under UV-A light. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115, 876-882. doi:10.1016/j.saa.2013.06.106 es_ES
dc.description.references Bizarro, M. (2010). High photocatalytic activity of ZnO and ZnO:Al nanostructured films deposited by spray pyrolysis. Applied Catalysis B: Environmental, 97(1-2), 198-203. doi:10.1016/j.apcatb.2010.03.040 es_ES
dc.description.references Zhang, P., Hong, R. Y., Chen, Q., & Feng, W. G. (2014). On the electrical conductivity and photocatalytic activity of aluminum-doped zinc oxide. Powder Technology, 253, 360-367. doi:10.1016/j.powtec.2013.12.001 es_ES
dc.description.references Shi, L., Liang, L., Ma, J., Meng, Y., Zhong, S., Wang, F., & Sun, J. (2014). Highly efficient visible light-driven Ag/AgBr/ZnO composite photocatalyst for degrading Rhodamine B. Ceramics International, 40(2), 3495-3502. doi:10.1016/j.ceramint.2013.09.080 es_ES
dc.description.references Liu, R., Huang, Y., Xiao, A., & Liu, H. (2010). Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers. Journal of Alloys and Compounds, 503(1), 103-110. doi:10.1016/j.jallcom.2010.04.211 es_ES
dc.description.references Xu, H., Liu, C., Li, H., Xu, Y., Xia, J., Yin, S., … Wu, X. (2011). Synthesis, characterization and photocatalytic activity of NaNbO3/ZnO heterojunction photocatalysts. Journal of Alloys and Compounds, 509(37), 9157-9163. doi:10.1016/j.jallcom.2011.06.100 es_ES
dc.description.references Torres Martínez, D. Y., Castanedo Pérez, R., Torres Delgado, G., & Zelaya Ángel, O. (2012). Structural, morphological, optical and photocatalytic characterization of ZnO–SnO2 thin films prepared by the sol–gel technique. Journal of Photochemistry and Photobiology A: Chemistry, 235, 49-55. doi:10.1016/j.jphotochem.2012.03.009 es_ES
dc.description.references Maolin Zhang, Guoying Sheng, Jiamo Fu, Taicheng An, Xinming Wang, & Xiaohong Hu. (2005). Novel preparation of nanosized ZnO–SnO2 with high photocatalytic activity by homogeneous co-precipitation method. Materials Letters, 59(28), 3641-3644. doi:10.1016/j.matlet.2005.06.037 es_ES
dc.description.references Lamba, R., Umar, A., Mehta, S. K., & Kumar Kansal, S. (2015). Well-crystalline porous ZnO–SnO2 nanosheets: An effective visible-light driven photocatalyst and highly sensitive smart sensor material. Talanta, 131, 490-498. doi:10.1016/j.talanta.2014.07.096 es_ES
dc.description.references Zhang, M., An, T., Hu, X., Wang, C., Sheng, G., & Fu, J. (2004). Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide. Applied Catalysis A: General, 260(2), 215-222. doi:10.1016/j.apcata.2003.10.025 es_ES
dc.description.references Wang, H., Baek, S., Lee, J., & Lim, S. (2009). High photocatalytic activity of silver-loaded ZnO-SnO2 coupled catalysts. Chemical Engineering Journal, 146(3), 355-361. doi:10.1016/j.cej.2008.06.016 es_ES
dc.description.references Lin, C.-C., & Chiang, Y.-J. (2012). Preparation of coupled ZnO/SnO2 photocatalysts using a rotating packed bed. Chemical Engineering Journal, 181-182, 196-205. doi:10.1016/j.cej.2011.11.062 es_ES
dc.description.references Cun, W., Jincai, Z., Xinming, W., Bixian, M., Guoying, S., Ping’an, P., & Jiamo, F. (2002). Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Applied Catalysis B: Environmental, 39(3), 269-279. doi:10.1016/s0926-3373(02)00115-7 es_ES
dc.description.references Hamrouni, A., Moussa, N., Parrino, F., Di Paola, A., Houas, A., & Palmisano, L. (2014). Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites. Journal of Molecular Catalysis A: Chemical, 390, 133-141. doi:10.1016/j.molcata.2014.03.018 es_ES
dc.description.references Li, C., Ahmed, T., Ma, M., Edvinsson, T., & Zhu, J. (2013). A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties. Applied Catalysis B: Environmental, 138-139, 175-183. doi:10.1016/j.apcatb.2013.02.042 es_ES
dc.description.references Chen, K.-J., Hung, F.-Y., Lui, T.-S., Chang, S.-P., & Wang, W.-L. (2013). The inter-metallic oxide of ZnO/ITO/ZnO tri-layer films using a heat-induced diffusion mechanism. Applied Surface Science, 273, 598-602. doi:10.1016/j.apsusc.2013.02.084 es_ES
dc.description.references Behnajady, M. A., & Alizade, B. (2013). Enhancement of TiO2-UV100 nanoparticles photocatalytic activity by Mg impregnation in the removal of a model organic pollutant. Desalination and Water Treatment, 53(3), 689-696. doi:10.1080/19443994.2013.846509 es_ES
dc.description.references Wang, C., Wang, X., Xu, B.-Q., Zhao, J., Mai, B., Peng, P., … Fu, J. (2004). Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. Journal of Photochemistry and Photobiology A: Chemistry, 168(1-2), 47-52. doi:10.1016/j.jphotochem.2004.05.014 es_ES
dc.description.references Spence, W. (1967). The uv Absorption Edge of Tin Oxide Thin Films. Journal of Applied Physics, 38(9), 3767-3770. doi:10.1063/1.1710208 es_ES
dc.description.references Hagfeldt, A., & Graetzel, M. (1995). Light-Induced Redox Reactions in Nanocrystalline Systems. Chemical Reviews, 95(1), 49-68. doi:10.1021/cr00033a003 es_ES
dc.description.references Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. doi:10.1021/cr00033a004 es_ES
dc.description.references Seftel, E. M., Puscasu, M. C., Mertens, M., Cool, P., & Carja, G. (2015). Fabrication of CeO2/LDHs self-assemblies with enhanced photocatalytic performance: A case study on ZnSn-LDH matrix. Applied Catalysis B: Environmental, 164, 251-260. doi:10.1016/j.apcatb.2014.09.035 es_ES
dc.description.references Hamrouni, A., Lachheb, H., & Houas, A. (2013). Synthesis, characterization and photocatalytic activity of ZnO-SnO2 nanocomposites. Materials Science and Engineering: B, 178(20), 1371-1379. doi:10.1016/j.mseb.2013.08.008 es_ES
dc.description.references Chen, L.-C., Tu, Y.-J., Wang, Y.-S., Kan, R.-S., & Huang, C.-M. (2008). Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. Journal of Photochemistry and Photobiology A: Chemistry, 199(2-3), 170-178. doi:10.1016/j.jphotochem.2008.05.022 es_ES
dc.description.references Chowdhury, I. H., Bose, P., & Naskar, M. K. (2016). A facile synthesis of mesoporous titania cubes and their photocatalytic application. Journal of Alloys and Compounds, 668, 56-64. doi:10.1016/j.jallcom.2016.01.167 es_ES
dc.description.references Comparelli, R., Fanizza, E., Curri, M. L., Cozzoli, P. D., Mascolo, G., & Agostiano, A. (2005). UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates. Applied Catalysis B: Environmental, 60(1-2), 1-11. doi:10.1016/j.apcatb.2005.02.013 es_ES
dc.description.references Seftel, E. M., Popovici, E., Mertens, M., Stefaniak, E. A., Van Grieken, R., Cool, P., & Vansant, E. F. (2008). SnIV-containing layered double hydroxides as precursors for nano-sized ZnO/SnO2 photocatalysts. Applied Catalysis B: Environmental, 84(3-4), 699-705. doi:10.1016/j.apcatb.2008.06.006 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem