Mostrar el registro sencillo del ítem
dc.contributor.author | Olmeda, P. | es_ES |
dc.contributor.author | Martín, Jaime | es_ES |
dc.contributor.author | Novella Rosa, Ricardo | es_ES |
dc.contributor.author | Blanco-Cavero, Diego | es_ES |
dc.date.accessioned | 2020-06-05T03:32:15Z | |
dc.date.available | 2020-06-05T03:32:15Z | |
dc.date.issued | 2020-06-01 | es_ES |
dc.identifier.issn | 1468-0874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145397 | |
dc.description.abstract | [EN] This work studies the optimum heat release law of a direct injection diesel engine under constrained conditions. For this purpose, a zero-dimensional predictive model of a diesel engine is coupled to an optimization tool used to shape the heat release law in order to optimize some outputs (maximize gross indicated efficiency and minimize NOx emissions) while keeping several restrictions (mechanical limits such as maximum peak pressure and maximum pressure rise rate). In a first step, this methodology is applied under different heat transfer scenarios without restrictions to evaluate the possible gain obtained through the thermal isolation of the combustion chamber. Results derived from this study show that heat transfer has a negative effect on gross indicated efficiency ranging from -4% of the fuel energy (m(f)H(v)), at high engine speed and load, up to -8% m(f)H(v), at low engine speed and load. In a second step, different mechanical limits are applied resulting in a gross indicated efficiency worsening from -1.4% m(f)H(v) up to -2.8% m(f)H(v) compared to the previous step when nominal constraints are applied. In these conditions, a temperature swing coating that covers the piston top and cylinder head is considered obtaining a maximum gross indicated efficiency improvement of +0.5% m(f)H(v) at low load and engine speed. Finally, NOx emissions are also included in the optimization obtaining the expected tradeoff between gross indicated efficiency and NOx. Under this optimization, cutting down the experimental emissions by 50% supposes a gross indicated efficiency penalty up to -8% m(f)H(v) when compared to the optimum combustion under nominal limits, while maintaining the experimental gross indicated efficiency allows to reduce the experimental emissions 30% at high load and 65% at low load and engine speed. | es_ES |
dc.description.sponsorship | This work was partially funded by GM Global R&D and the Government of Spain through Project TRA2017-89894-R. In addition, the authors acknowledge that some equipment used in this work has been partially supported by FEDER project funds (FEDER-ICTS-2012-06), framed in the operational programme of unique scientific and technical infrastructure of the Ministry of Science and Innovation of Spain. Diego Blanco-Cavero is partially supported through contract FPI-S2-2016-1356 of the Programa de Apoyo para la Investigacion y Desarrollo (PAID) of Universitat Politcenica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Diesel engine | es_ES |
dc.subject | Combustion optimization | es_ES |
dc.subject | NOx emissions | es_ES |
dc.subject | Temperature swing coating | es_ES |
dc.subject | Efficiency | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Assessing the optimum combustion under constrained conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087418814086 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//FPI-S2-2016-1356/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89894-R/ES/METODOLOGIA PARA LA PREDICCION DE EMISIONES DE CO2 Y CONTAMINANTES DE UN MOTOR ALTERNATIVO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Olmeda, P.; Martín, J.; Novella Rosa, R.; Blanco-Cavero, D. (2020). Assessing the optimum combustion under constrained conditions. International Journal of Engine Research. 21(5):811-823. https://doi.org/10.1177/1468087418814086 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1468087418814086 | es_ES |
dc.description.upvformatpinicio | 811 | es_ES |
dc.description.upvformatpfin | 823 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\383288 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Degraeuwe, B., & Weiss, M. (2017). Does the New European Driving Cycle (NEDC) really fail to capture the NOX emissions of diesel cars in Europe? Environmental Pollution, 222, 234-241. doi:10.1016/j.envpol.2016.12.050 | es_ES |
dc.description.references | Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028 | es_ES |
dc.description.references | Kiplimo, R., Tomita, E., Kawahara, N., & Yokobe, S. (2012). Effects of spray impingement, injection parameters, and EGR on the combustion and emission characteristics of a PCCI diesel engine. Applied Thermal Engineering, 37, 165-175. doi:10.1016/j.applthermaleng.2011.11.011 | es_ES |
dc.description.references | Wakisaka, Y., Inayoshi, M., Fukui, K., Kosaka, H., Hotta, Y., Kawaguchi, A., & Takada, N. (2016). Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of «Temperature Swing» Insulation to Direct-Injection Diesel Engines. SAE International Journal of Engines, 9(3), 1449-1459. doi:10.4271/2016-01-0661 | es_ES |
dc.description.references | Caputo, S., Millo, F., Cifali, G., & Pesce, F. C. (2017). Numerical Investigation on the Effects of Different Thermal Insulation Strategies for a Passenger Car Diesel Engine. SAE International Journal of Engines, 10(4), 2154-2165. doi:10.4271/2017-24-0021 | es_ES |
dc.description.references | Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665 | es_ES |
dc.description.references | Benajes, J., Olmeda, P., Martín, J., Blanco-Cavero, D., & Warey, A. (2017). Evaluation of swirl effect on the Global Energy Balance of a HSDI Diesel engine. Energy, 122, 168-181. doi:10.1016/j.energy.2017.01.082 | es_ES |
dc.description.references | RAKOPOULOS, C., & GIAKOUMIS, E. (2006). Second-law analyses applied to internal combustion engines operation. Progress in Energy and Combustion Science, 32(1), 2-47. doi:10.1016/j.pecs.2005.10.001 | es_ES |
dc.description.references | Eriksson, L., & Sivertsson, M. (2015). Computing Optimal Heat Release Rates in Combustion Engines. SAE International Journal of Engines, 8(3), 1069-1079. doi:10.4271/2015-01-0882 | es_ES |
dc.description.references | Eriksson, L., & Sivertsson, M. (2016). Calculation of Optimal Heat Release Rates under Constrained Conditions. SAE International Journal of Engines, 9(2), 1143-1162. doi:10.4271/2016-01-0812 | es_ES |
dc.description.references | Guardiola, C., Climent, H., Pla, B., & Reig, A. (2017). Optimal Control as a method for Diesel engine efficiency assessment including pressure and NO x constraints. Applied Thermal Engineering, 117, 452-461. doi:10.1016/j.applthermaleng.2017.02.056 | es_ES |
dc.description.references | Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005 | es_ES |
dc.description.references | Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1 | es_ES |
dc.description.references | Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006 | es_ES |
dc.description.references | Torregrosa, A. J., Olmeda, P., Martín, J., & Romero, C. (2011). A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 32(10), 891-904. doi:10.1080/01457632.2011.548639 | es_ES |
dc.description.references | Benajes, J., Novella, R., De Lima, D., & Tribotté, P. (2014). Analysis of combustion concepts in a newly designed two-stroke high-speed direct injection compression ignition engine. International Journal of Engine Research, 16(1), 52-67. doi:10.1177/1468087414562867 | es_ES |
dc.description.references | Benajes, J., Martín, J., Novella, R., & Thein, K. (2016). Understanding the performance of the multiple injection gasoline partially premixed combustion concept implemented in a 2-Stroke high speed direct injection compression ignition engine. Applied Energy, 161, 465-475. doi:10.1016/j.apenergy.2015.10.034 | es_ES |
dc.description.references | Guardiola, C., Martín, J., Pla, B., & Bares, P. (2017). Cycle by cycle NOx model for diesel engine control. Applied Thermal Engineering, 110, 1011-1020. doi:10.1016/j.applthermaleng.2016.08.170 | es_ES |
dc.description.references | Benajes, J., Olmeda, P., Martín, J., & Carreño, R. (2014). A new methodology for uncertainties characterization in combustion diagnosis and thermodynamic modelling. Applied Thermal Engineering, 71(1), 389-399. doi:10.1016/j.applthermaleng.2014.07.010 | es_ES |
dc.description.references | Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021 | es_ES |
dc.description.references | Broatch, A., Olmeda, P., García, A., Salvador-Iborra, J., & Warey, A. (2017). Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy, 119, 1010-1023. doi:10.1016/j.energy.2016.11.040 | es_ES |
dc.description.references | Arrègle, J., López, J. J., Guardiola, C., & Monin, C. (2010). On Board NOx Prediction in Diesel Engines: A Physical Approach. Lecture Notes in Control and Information Sciences, 25-36. doi:10.1007/978-1-84996-071-7_2 | es_ES |
dc.description.references | Steinparzer, F., Nefischer, P., Hiemesch, D., & Rechberger, E. (2016). The New BMW Six-cylinder Top Engine with Innovative Turbocharging Concept. MTZ worldwide, 77(10), 38-45. doi:10.1007/s38313-016-0104-4 | es_ES |