- -

Buckling Analysis and Stability of Compressed Low-Carbon Steel Rods in the Elastoplastic Region of Materials

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Buckling Analysis and Stability of Compressed Low-Carbon Steel Rods in the Elastoplastic Region of Materials

Show full item record

Partskhaladze, G.; Mshvenieradze, I.; Medzmariashvili, E.; Chavleshvili, G.; Yepes, V.; Alcalá-González, J. (2019). Buckling Analysis and Stability of Compressed Low-Carbon Steel Rods in the Elastoplastic Region of Materials. Advances in Civil Engineering. 2019:1-9. https://doi.org/10.1155/2019/7601260

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145401

Files in this item

Item Metadata

Title: Buckling Analysis and Stability of Compressed Low-Carbon Steel Rods in the Elastoplastic Region of Materials
Author: Partskhaladze, G. Mshvenieradze, I. Medzmariashvili, E. Chavleshvili, G. Yepes, V. Alcalá-González, Julián
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Issued date:
Abstract:
[EN] This paper presents new approaches for solving a problem of the stability of compressed rods in the elastoplastic working region of materials. It is known that the columns of buildings, supports of engineering devices, ...[+]
Subjects: Structures , Buckling analysis , Elastoplastic region , Steel rods
Copyrigths: Reconocimiento (by)
Source:
Advances in Civil Engineering. (issn: 1687-8086 )
DOI: 10.1155/2019/7601260
Publisher:
Hindawi Limited
Publisher version: https://doi.org/10.1155/2019/7601260
Project ID:
EC/ELEC1400294
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/
Thanks:
This research was financially supported by the Erasmus Mundus Action 2 Project Electra: Enhancing Learning in ENPI Countries through Clean Technologies and Research related Activities (project: ELEC1400294) and the Spanish ...[+]
Type: Artículo

References

Braun, D. J. (2008). On the optimal shape of compressed rotating rod with shear and extensibility. International Journal of Non-Linear Mechanics, 43(2), 131-139. doi:10.1016/j.ijnonlinmec.2007.11.001

Rossi, B., & Rasmussen, K. J. R. (2013). Carrying Capacity of Stainless Steel Columns in the Low Slenderness Range. Journal of Structural Engineering, 139(6), 1088-1092. doi:10.1061/(asce)st.1943-541x.0000666

Cheng, X., Chen, Y., Niu, L., & Nethercot, D. A. (2018). Experimental study on H-section steel beam-columns under cyclic biaxial bending considering the effect of local buckling. Engineering Structures, 174, 826-839. doi:10.1016/j.engstruct.2018.08.001 [+]
Braun, D. J. (2008). On the optimal shape of compressed rotating rod with shear and extensibility. International Journal of Non-Linear Mechanics, 43(2), 131-139. doi:10.1016/j.ijnonlinmec.2007.11.001

Rossi, B., & Rasmussen, K. J. R. (2013). Carrying Capacity of Stainless Steel Columns in the Low Slenderness Range. Journal of Structural Engineering, 139(6), 1088-1092. doi:10.1061/(asce)st.1943-541x.0000666

Cheng, X., Chen, Y., Niu, L., & Nethercot, D. A. (2018). Experimental study on H-section steel beam-columns under cyclic biaxial bending considering the effect of local buckling. Engineering Structures, 174, 826-839. doi:10.1016/j.engstruct.2018.08.001

Goto, Y., Muraki, M., & Obata, M. (2009). Ultimate State of Thin-Walled Circular Steel Columns under Bidirectional Seismic Accelerations. Journal of Structural Engineering, 135(12), 1481-1490. doi:10.1061/(asce)st.1943-541x.0000076

Lu, J., Wu, B., & Mei, Y. (2018). Buckling mechanism of steel core and global stability design method for fixed-end buckling-restrained braces. Engineering Structures, 174, 447-461. doi:10.1016/j.engstruct.2018.07.024

Razdolsky, A. G. (2014). Revision of Engesser’s Approach to the Problem of Euler Stability for Built-Up Columns with Batten Plates. Journal of Engineering Mechanics, 140(3), 566-574. doi:10.1061/(asce)em.1943-7889.0000677

Zapata-Medina, D. G., Arboleda-Monsalve, L. G., & Aristizabal-Ochoa, J. D. (2010). Static Stability Formulas of a Weakened Timoshenko Column: Effects of Shear Deformations. Journal of Engineering Mechanics, 136(12), 1528-1536. doi:10.1061/(asce)em.1943-7889.0000193

Ziółkowski, A., & Imiełowski, S. (2010). Buckling and Post-buckling Behaviour of Prismatic Aluminium Columns Submitted to a Series of Compressive Loads. Experimental Mechanics, 51(8), 1335-1345. doi:10.1007/s11340-010-9455-y

Li, P., Liu, X., & Zhang, C. (2018). Interactive buckling of cable-stiffened steel columns with pin-connected crossarms. Journal of Constructional Steel Research, 146, 97-108. doi:10.1016/j.jcsr.2018.03.037

Yang, L., Shi, G., Zhao, M., & Zhou, W. (2017). Research on interactive buckling behavior of welded steel box-section columns. Thin-Walled Structures, 115, 34-47. doi:10.1016/j.tws.2017.01.030

Papp, F. (2016). Buckling assessment of steel members through overall imperfection method. Engineering Structures, 106, 124-136. doi:10.1016/j.engstruct.2015.10.021

Simão, P. D. (2017). Influence of shear deformations on the buckling of columns using the Generalized Beam Theory and energy principles. European Journal of Mechanics - A/Solids, 61, 216-234. doi:10.1016/j.euromechsol.2016.09.015

Li, X.-F., & Lee, K. Y. (2018). Effects of Engesser’s and Haringx’s Hypotheses on Buckling of Timoshenko and Higher-Order Shear-Deformable Columns. Journal of Engineering Mechanics, 144(1), 04017150. doi:10.1061/(asce)em.1943-7889.0001363

Becque, J. (2010). Inelastic Plate Buckling. Journal of Engineering Mechanics, 136(9), 1123-1130. doi:10.1061/(asce)em.1943-7889.0000075

Ahmed, M., Liang, Q. Q., Patel, V. I., & Hadi, M. N. S. (2018). Nonlinear analysis of rectangular concrete-filled double steel tubular short columns incorporating local buckling. Engineering Structures, 175, 13-26. doi:10.1016/j.engstruct.2018.08.032

Long, Y.-L., & Zeng, L. (2018). A refined model for local buckling of rectangular CFST columns with binding bars. Thin-Walled Structures, 132, 431-441. doi:10.1016/j.tws.2018.09.019

Moen, C. D., Schudlich, A., & von der Heyden, A. (2013). Experiments on Cold-Formed Steel C-Section Joists with Unstiffened Web Holes. Journal of Structural Engineering, 139(5), 695-704. doi:10.1061/(asce)st.1943-541x.0000652

Szalai, J. (2017). Complete generalization of the Ayrton-Perry formula for beam-column buckling problems. Engineering Structures, 153, 205-223. doi:10.1016/j.engstruct.2017.10.031

Zhang, C., Li, F., & Wang, B. (2013). Estimation of the elasto-plastic properties of metallic materials from micro-hardness measurements. Journal of Materials Science, 48(12), 4446-4451. doi:10.1007/s10853-013-7263-3

Ban, H., & Shi, G. (2018). Overall buckling behaviour and design of high-strength steel welded section columns. Journal of Constructional Steel Research, 143, 180-195. doi:10.1016/j.jcsr.2017.12.026

Ma, T.-Y., Hu, Y.-F., Liu, X., Li, G.-Q., & Chung, K.-F. (2017). Experimental investigation into high strength Q690 steel welded H-sections under combined compression and bending. Journal of Constructional Steel Research, 138, 449-462. doi:10.1016/j.jcsr.2017.06.008

Kervalishvili, A., & Talvik, I. (2016). Modified procedure for buckling of steel columns at elevated temperatures. Journal of Constructional Steel Research, 127, 108-119. doi:10.1016/j.jcsr.2016.07.008

Tankova, T., Martins, J. P., Simões da Silva, L., Marques, L., Craveiro, H. D., & Santiago, A. (2018). Experimental lateral-torsional buckling behaviour of web tapered I-section steel beams. Engineering Structures, 168, 355-370. doi:10.1016/j.engstruct.2018.04.084

Tullini, N., Tralli, A., & Baraldi, D. (2013). Buckling of Timoshenko Beams in Frictionless Contact with an Elastic Half-Plane. Journal of Engineering Mechanics, 139(7), 824-831. doi:10.1061/(asce)em.1943-7889.0000529

Xie, B., Hou, J., Xu, Z., & Dan, M. (2018). Component-based model of fin plate connections exposed to fire-part I: Plate in bearing component. Journal of Constructional Steel Research, 149, 1-13. doi:10.1016/j.jcsr.2018.07.011

Aristizabal-Ochoa, J. D. (2011). Stability of columns with semi-rigid connections including shear effects using Engesser, Haringx and Euler approaches. Engineering Structures, 33(3), 868-880. doi:10.1016/j.engstruct.2010.12.008

Mitenkov, F. M., Bazhenov, V. G., Lomunov, V. K., & Osetrov, S. L. (2011). Effects of elasticity, plasticity, and geometrical nonlinearity in problems of static and dynamic bending of plates. Doklady Physics, 56(12), 622-625. doi:10.1134/s102833581112010x

Bielski, J., & Bochenek, B. (2008). On a compressed elastic–plastic column optimized for post-buckling behaviour. Engineering Optimization, 40(12), 1101-1114. doi:10.1080/03052150802313365

Fergani, O., Lazoglu, I., Mkaddem, A., El Mansori, M., & Liang, S. Y. (2014). Analytical modeling of residual stress and the induced deflection of a milled thin plate. The International Journal of Advanced Manufacturing Technology, 75(1-4), 455-463. doi:10.1007/s00170-014-6146-3

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record