- -

Fast 3-D heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fast 3-D heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gil, A. es_ES
dc.contributor.author Tiseira, Andrés-Omar es_ES
dc.contributor.author García-Cuevas González, Luis Miguel es_ES
dc.contributor.author Rodriguez-Usaquen, Yuly Tatiana es_ES
dc.contributor.author Mijotte, G. es_ES
dc.date.accessioned 2020-06-05T03:32:56Z
dc.date.available 2020-06-05T03:32:56Z
dc.date.issued 2018-09 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145413
dc.description.abstract [EN] Each of the elements that make up the turbocharger has been gradually improved. In order to ensure that the system does not experience any mechanical failures or loss of efficiency, it is important to study which engine operating conditions could produce the highest failing rate. Common failing conditions in turbochargers are mostly achieve due to oil contamination and high temperatures in the bearing system. Thermal management becomes increasingly important for the required engine performance. Therefore, it has become necessary to have accurate temperature and heat transfer models. Most thermal design and analysis codes need data for validation; often the data available falls outside the range of conditions the engine experiences in reality leading to the need to interpolate and extrapolate disproportionately. This paper presents a fast 3D heat transfer model for computing internal temperatures in the central housing for non-water cooled turbochargers and its direct validation with experimental data at different engine operating conditions of speed and load. The presented model allows a detailed study of the temperature rise of the central housing, lubrication channels, and maximum level of temperature at different points of the bearing system of an automotive turbocharger. It will let to evaluate thermal damage done to the system itself and influences on the working fluid temperatures, which leads oil coke formation that can affect the performance of the engine. Thermal heat transfer properties obtained from this model can be used for to feed and improve a radial lumped model of heat transfer that predicts only local internal temperatures[1]. Model validation is illustrated and finally the main results are discussed. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Authors want to acknowledge the Apoyo para la investigación y Desarrollo (PAID) grant for doctoral studies (FPI-2016-S2-1354). es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Turbocharger es_ES
dc.subject Thermal characterization es_ES
dc.subject 3D heat transfer model es_ES
dc.subject FEM es_ES
dc.subject Central housing es_ES
dc.subject Bearing system es_ES
dc.subject Oil damage es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Fast 3-D heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087418804949 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-2016-S2-1354/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Gil, A.; Tiseira, A.; García-Cuevas González, LM.; Rodriguez-Usaquen, YT.; Mijotte, G. (2018). Fast 3-D heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers. International Journal of Engine Research. https://doi.org/10.1177/1468087418804949 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087418804949 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\367963 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Khalife, E., Tabatabaei, M., Demirbas, A., & Aghbashlo, M. (2017). Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science, 59, 32-78. doi:10.1016/j.pecs.2016.10.001 es_ES
dc.description.references Payri, F., Olmeda, P., Martín, J., & Carreño, R. (2015). Experimental analysis of the global energy balance in a DI diesel engine. Applied Thermal Engineering, 89, 545-557. doi:10.1016/j.applthermaleng.2015.06.005 es_ES
dc.description.references Serrano, J. R., Tormos, B., Gargar, K. L., & Bouffaud, F. (2011). Study of the Effects on Turbocharger Performance Generated by the Presence of Foreign Objects at the Compressor Intake. Experimental Techniques, 37(2), 30-40. doi:10.1111/j.1747-1567.2011.00795.x es_ES
dc.description.references Galindo, J., Serrano, J. R., Dolz, V., López, M. A., & Bouffaud, F. (2013). Behavior of an IC Engine Turbocharger in Critical Conditions of Lubrication. SAE International Journal of Engines, 6(2), 797-805. doi:10.4271/2013-01-0921 es_ES
dc.description.references Deligant, M., Podevin, P., & Descombes, G. (2011). CFD model for turbocharger journal bearing performances. Applied Thermal Engineering, 31(5), 811-819. doi:10.1016/j.applthermaleng.2010.10.030 es_ES
dc.description.references Sim, K., Lee, Y.-B., & Kim, T. H. (2013). Effects of Mechanical Preload and Bearing Clearance on Rotordynamic Performance of Lobed Gas Foil Bearings for Oil-Free Turbochargers. Tribology Transactions, 56(2), 224-235. doi:10.1080/10402004.2012.737502 es_ES
dc.description.references Drewczynski, M., & Rzadkowski, R. (2015). A stress analysis of a compressor blade in partially blocked inlet condition. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(5), 934-952. doi:10.1177/0954410015601149 es_ES
dc.description.references Filsinger, D., Szwedowicz, J., & Scha¨fer, O. (2001). Approach to Unidirectional Coupled CFD–FEM Analysis of Axial Turbocharger Turbine Blades. Journal of Turbomachinery, 124(1), 125-131. doi:10.1115/1.1415035 es_ES
dc.description.references Romagnoli, A., & Martinez-Botas, R. (2012). Heat transfer analysis in a turbocharger turbine: An experimental and computational evaluation. Applied Thermal Engineering, 38, 58-77. doi:10.1016/j.applthermaleng.2011.12.022 es_ES
dc.description.references De Faoite, D., Browne, D. J., Chang-Díaz, F. R., & Stanton, K. T. (2011). A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics. Journal of Materials Science, 47(10), 4211-4235. doi:10.1007/s10853-011-6140-1 es_ES
dc.description.references Sachdev, A. K., Kulkarni, K., Fang, Z. Z., Yang, R., & Girshov, V. (2012). Titanium for Automotive Applications: Challenges and Opportunities in Materials and Processing. JOM, 64(5), 553-565. doi:10.1007/s11837-012-0310-8 es_ES
dc.description.references Tetsui, T. (2002). Development of a TiAl turbocharger for passenger vehicles. Materials Science and Engineering: A, 329-331, 582-588. doi:10.1016/s0921-5093(01)01584-2 es_ES
dc.description.references Wu, X. (2006). Review of alloy and process development of TiAl alloys. Intermetallics, 14(10-11), 1114-1122. doi:10.1016/j.intermet.2005.10.019 es_ES
dc.description.references Appel, F., Paul, J. D. H., & Oehring, M. (2011). Gamma Titanium Aluminide Alloys. doi:10.1002/9783527636204 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem