Mostrar el registro sencillo del ítem
dc.contributor.author | Gil, A. | es_ES |
dc.contributor.author | Tiseira, Andrés-Omar | es_ES |
dc.contributor.author | García-Cuevas González, Luis Miguel | es_ES |
dc.contributor.author | Rodriguez-Usaquen, Yuly Tatiana | es_ES |
dc.contributor.author | Mijotte, G. | es_ES |
dc.date.accessioned | 2020-06-05T03:32:56Z | |
dc.date.available | 2020-06-05T03:32:56Z | |
dc.date.issued | 2018-09 | es_ES |
dc.identifier.issn | 1468-0874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145413 | |
dc.description.abstract | [EN] Each of the elements that make up the turbocharger has been gradually improved. In order to ensure that the system does not experience any mechanical failures or loss of efficiency, it is important to study which engine operating conditions could produce the highest failing rate. Common failing conditions in turbochargers are mostly achieve due to oil contamination and high temperatures in the bearing system. Thermal management becomes increasingly important for the required engine performance. Therefore, it has become necessary to have accurate temperature and heat transfer models. Most thermal design and analysis codes need data for validation; often the data available falls outside the range of conditions the engine experiences in reality leading to the need to interpolate and extrapolate disproportionately. This paper presents a fast 3D heat transfer model for computing internal temperatures in the central housing for non-water cooled turbochargers and its direct validation with experimental data at different engine operating conditions of speed and load. The presented model allows a detailed study of the temperature rise of the central housing, lubrication channels, and maximum level of temperature at different points of the bearing system of an automotive turbocharger. It will let to evaluate thermal damage done to the system itself and influences on the working fluid temperatures, which leads oil coke formation that can affect the performance of the engine. Thermal heat transfer properties obtained from this model can be used for to feed and improve a radial lumped model of heat transfer that predicts only local internal temperatures[1]. Model validation is illustrated and finally the main results are discussed. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Authors want to acknowledge the Apoyo para la investigación y Desarrollo (PAID) grant for doctoral studies (FPI-2016-S2-1354). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Turbocharger | es_ES |
dc.subject | Thermal characterization | es_ES |
dc.subject | 3D heat transfer model | es_ES |
dc.subject | FEM | es_ES |
dc.subject | Central housing | es_ES |
dc.subject | Bearing system | es_ES |
dc.subject | Oil damage | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Fast 3-D heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087418804949 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//FPI-2016-S2-1354/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Gil, A.; Tiseira, A.; García-Cuevas González, LM.; Rodriguez-Usaquen, YT.; Mijotte, G. (2018). Fast 3-D heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers. International Journal of Engine Research. https://doi.org/10.1177/1468087418804949 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1468087418804949 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\367963 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Khalife, E., Tabatabaei, M., Demirbas, A., & Aghbashlo, M. (2017). Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science, 59, 32-78. doi:10.1016/j.pecs.2016.10.001 | es_ES |
dc.description.references | Payri, F., Olmeda, P., Martín, J., & Carreño, R. (2015). Experimental analysis of the global energy balance in a DI diesel engine. Applied Thermal Engineering, 89, 545-557. doi:10.1016/j.applthermaleng.2015.06.005 | es_ES |
dc.description.references | Serrano, J. R., Tormos, B., Gargar, K. L., & Bouffaud, F. (2011). Study of the Effects on Turbocharger Performance Generated by the Presence of Foreign Objects at the Compressor Intake. Experimental Techniques, 37(2), 30-40. doi:10.1111/j.1747-1567.2011.00795.x | es_ES |
dc.description.references | Galindo, J., Serrano, J. R., Dolz, V., López, M. A., & Bouffaud, F. (2013). Behavior of an IC Engine Turbocharger in Critical Conditions of Lubrication. SAE International Journal of Engines, 6(2), 797-805. doi:10.4271/2013-01-0921 | es_ES |
dc.description.references | Deligant, M., Podevin, P., & Descombes, G. (2011). CFD model for turbocharger journal bearing performances. Applied Thermal Engineering, 31(5), 811-819. doi:10.1016/j.applthermaleng.2010.10.030 | es_ES |
dc.description.references | Sim, K., Lee, Y.-B., & Kim, T. H. (2013). Effects of Mechanical Preload and Bearing Clearance on Rotordynamic Performance of Lobed Gas Foil Bearings for Oil-Free Turbochargers. Tribology Transactions, 56(2), 224-235. doi:10.1080/10402004.2012.737502 | es_ES |
dc.description.references | Drewczynski, M., & Rzadkowski, R. (2015). A stress analysis of a compressor blade in partially blocked inlet condition. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(5), 934-952. doi:10.1177/0954410015601149 | es_ES |
dc.description.references | Filsinger, D., Szwedowicz, J., & Scha¨fer, O. (2001). Approach to Unidirectional Coupled CFD–FEM Analysis of Axial Turbocharger Turbine Blades. Journal of Turbomachinery, 124(1), 125-131. doi:10.1115/1.1415035 | es_ES |
dc.description.references | Romagnoli, A., & Martinez-Botas, R. (2012). Heat transfer analysis in a turbocharger turbine: An experimental and computational evaluation. Applied Thermal Engineering, 38, 58-77. doi:10.1016/j.applthermaleng.2011.12.022 | es_ES |
dc.description.references | De Faoite, D., Browne, D. J., Chang-Díaz, F. R., & Stanton, K. T. (2011). A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics. Journal of Materials Science, 47(10), 4211-4235. doi:10.1007/s10853-011-6140-1 | es_ES |
dc.description.references | Sachdev, A. K., Kulkarni, K., Fang, Z. Z., Yang, R., & Girshov, V. (2012). Titanium for Automotive Applications: Challenges and Opportunities in Materials and Processing. JOM, 64(5), 553-565. doi:10.1007/s11837-012-0310-8 | es_ES |
dc.description.references | Tetsui, T. (2002). Development of a TiAl turbocharger for passenger vehicles. Materials Science and Engineering: A, 329-331, 582-588. doi:10.1016/s0921-5093(01)01584-2 | es_ES |
dc.description.references | Wu, X. (2006). Review of alloy and process development of TiAl alloys. Intermetallics, 14(10-11), 1114-1122. doi:10.1016/j.intermet.2005.10.019 | es_ES |
dc.description.references | Appel, F., Paul, J. D. H., & Oehring, M. (2011). Gamma Titanium Aluminide Alloys. doi:10.1002/9783527636204 | es_ES |