- -

Fast 3-D heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fast 3-D heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers

Mostrar el registro completo del ítem

Gil, A.; Tiseira, A.; García-Cuevas González, LM.; Rodriguez-Usaquen, YT.; Mijotte, G. (2018). Fast 3-D heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers. International Journal of Engine Research. https://doi.org/10.1177/1468087418804949

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145413

Ficheros en el ítem

Metadatos del ítem

Título: Fast 3-D heat transfer model for computing internal temperatures in the bearing housing of automotive turbochargers
Autor: Gil, A. Tiseira, Andrés-Omar García-Cuevas González, Luis Miguel Rodriguez-Usaquen, Yuly Tatiana Mijotte, G.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Each of the elements that make up the turbocharger has been gradually improved. In order to ensure that the system does not experience any mechanical failures or loss of efficiency, it is important to study which ...[+]
Palabras clave: Turbocharger , Thermal characterization , 3D heat transfer model , FEM , Central housing , Bearing system , Oil damage
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Engine Research. (issn: 1468-0874 )
DOI: 10.1177/1468087418804949
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/1468087418804949
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//FPI-2016-S2-1354/
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Authors want to acknowledge the Apoyo para la investigación y Desarrollo (PAID) grant ...[+]
Tipo: Artículo

References

Khalife, E., Tabatabaei, M., Demirbas, A., & Aghbashlo, M. (2017). Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science, 59, 32-78. doi:10.1016/j.pecs.2016.10.001

Payri, F., Olmeda, P., Martín, J., & Carreño, R. (2015). Experimental analysis of the global energy balance in a DI diesel engine. Applied Thermal Engineering, 89, 545-557. doi:10.1016/j.applthermaleng.2015.06.005

Serrano, J. R., Tormos, B., Gargar, K. L., & Bouffaud, F. (2011). Study of the Effects on Turbocharger Performance Generated by the Presence of Foreign Objects at the Compressor Intake. Experimental Techniques, 37(2), 30-40. doi:10.1111/j.1747-1567.2011.00795.x [+]
Khalife, E., Tabatabaei, M., Demirbas, A., & Aghbashlo, M. (2017). Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science, 59, 32-78. doi:10.1016/j.pecs.2016.10.001

Payri, F., Olmeda, P., Martín, J., & Carreño, R. (2015). Experimental analysis of the global energy balance in a DI diesel engine. Applied Thermal Engineering, 89, 545-557. doi:10.1016/j.applthermaleng.2015.06.005

Serrano, J. R., Tormos, B., Gargar, K. L., & Bouffaud, F. (2011). Study of the Effects on Turbocharger Performance Generated by the Presence of Foreign Objects at the Compressor Intake. Experimental Techniques, 37(2), 30-40. doi:10.1111/j.1747-1567.2011.00795.x

Galindo, J., Serrano, J. R., Dolz, V., López, M. A., & Bouffaud, F. (2013). Behavior of an IC Engine Turbocharger in Critical Conditions of Lubrication. SAE International Journal of Engines, 6(2), 797-805. doi:10.4271/2013-01-0921

Deligant, M., Podevin, P., & Descombes, G. (2011). CFD model for turbocharger journal bearing performances. Applied Thermal Engineering, 31(5), 811-819. doi:10.1016/j.applthermaleng.2010.10.030

Sim, K., Lee, Y.-B., & Kim, T. H. (2013). Effects of Mechanical Preload and Bearing Clearance on Rotordynamic Performance of Lobed Gas Foil Bearings for Oil-Free Turbochargers. Tribology Transactions, 56(2), 224-235. doi:10.1080/10402004.2012.737502

Drewczynski, M., & Rzadkowski, R. (2015). A stress analysis of a compressor blade in partially blocked inlet condition. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(5), 934-952. doi:10.1177/0954410015601149

Filsinger, D., Szwedowicz, J., & Scha¨fer, O. (2001). Approach to Unidirectional Coupled CFD–FEM Analysis of Axial Turbocharger Turbine Blades. Journal of Turbomachinery, 124(1), 125-131. doi:10.1115/1.1415035

Romagnoli, A., & Martinez-Botas, R. (2012). Heat transfer analysis in a turbocharger turbine: An experimental and computational evaluation. Applied Thermal Engineering, 38, 58-77. doi:10.1016/j.applthermaleng.2011.12.022

De Faoite, D., Browne, D. J., Chang-Díaz, F. R., & Stanton, K. T. (2011). A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics. Journal of Materials Science, 47(10), 4211-4235. doi:10.1007/s10853-011-6140-1

Sachdev, A. K., Kulkarni, K., Fang, Z. Z., Yang, R., & Girshov, V. (2012). Titanium for Automotive Applications: Challenges and Opportunities in Materials and Processing. JOM, 64(5), 553-565. doi:10.1007/s11837-012-0310-8

Tetsui, T. (2002). Development of a TiAl turbocharger for passenger vehicles. Materials Science and Engineering: A, 329-331, 582-588. doi:10.1016/s0921-5093(01)01584-2

Wu, X. (2006). Review of alloy and process development of TiAl alloys. Intermetallics, 14(10-11), 1114-1122. doi:10.1016/j.intermet.2005.10.019

Appel, F., Paul, J. D. H., & Oehring, M. (2011). Gamma Titanium Aluminide Alloys. doi:10.1002/9783527636204

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem