- -

Pitting corrosion in AISI 304 rolled stainless steel welding at different deformation levels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pitting corrosion in AISI 304 rolled stainless steel welding at different deformation levels

Mostrar el registro completo del ítem

Cárcel Carrasco, FJ.; Pascual Guillamón, M.; Solano García, L.; Salas Vicente, F.; Pérez Puig, MA. (2019). Pitting corrosion in AISI 304 rolled stainless steel welding at different deformation levels. Applied Sciences. 9(16):1-12. https://doi.org/10.3390/app9163265

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145417

Ficheros en el ítem

Metadatos del ítem

Título: Pitting corrosion in AISI 304 rolled stainless steel welding at different deformation levels
Autor: Cárcel Carrasco, Francisco Javier Pascual Guillamón, Manuel Solano García, Lorenzo Salas Vicente, Fidel Pérez Puig, Miguel Angel
Entidad UPV: Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] This paper analyzes pitting corrosion at the weld zone and at the heat affected zone (HAZ) in AISI 304 rolled stainless steel welds. As the aforementioned material is one of the most frequently used types of stainless ...[+]
Palabras clave: Pitting corrosion , Welding , Cold rolling , Deformation stress , AISI 304 , AISI 308L
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app9163265
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app9163265
Agradecimientos:
The authors deeply thank the Universitat Politècnica de València (Spain), for the support of this research.
Tipo: Artículo

References

Sathiya, P., Aravindan, S., & Noorul Haq, A. (2004). Mechanical and metallurgical properties of friction welded AISI 304 austenitic stainless steel. The International Journal of Advanced Manufacturing Technology, 26(5-6), 505-511. doi:10.1007/s00170-004-2018-6

Gong, N., Wu, H.-B., Yu, Z.-C., Niu, G., & Zhang, D. (2017). Studying Mechanical Properties and Micro Deformation of Ultrafine-Grained Structures in Austenitic Stainless Steel. Metals, 7(6), 188. doi:10.3390/met7060188

Fellinger, J., Citarella, R., Giannella, V., Lepore, M., Sepe, R., Czerwinski, M., … Stadler, R. (2018). Overview of fatigue life assessment of baffles in Wendelstein 7-X. Fusion Engineering and Design, 136, 292-297. doi:10.1016/j.fusengdes.2018.02.011 [+]
Sathiya, P., Aravindan, S., & Noorul Haq, A. (2004). Mechanical and metallurgical properties of friction welded AISI 304 austenitic stainless steel. The International Journal of Advanced Manufacturing Technology, 26(5-6), 505-511. doi:10.1007/s00170-004-2018-6

Gong, N., Wu, H.-B., Yu, Z.-C., Niu, G., & Zhang, D. (2017). Studying Mechanical Properties and Micro Deformation of Ultrafine-Grained Structures in Austenitic Stainless Steel. Metals, 7(6), 188. doi:10.3390/met7060188

Fellinger, J., Citarella, R., Giannella, V., Lepore, M., Sepe, R., Czerwinski, M., … Stadler, R. (2018). Overview of fatigue life assessment of baffles in Wendelstein 7-X. Fusion Engineering and Design, 136, 292-297. doi:10.1016/j.fusengdes.2018.02.011

Lv, J., Liang, T., & Luo, H. (2016). Influence of pre-deformation, sensitization and oxidation in high temperature water on corrosion resistance of AISI 304 stainless steel. Nuclear Engineering and Design, 309, 1-7. doi:10.1016/j.nucengdes.2016.09.004

Hsu, C.-H., Chen, T.-C., Huang, R.-T., & Tsay, L.-W. (2017). Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray. Materials, 10(2), 187. doi:10.3390/ma10020187

Devendranath Ramkumar, K., Arivazhagan, N., & Narayanan, S. (2012). Effect of filler materials on the performance of gas tungsten arc welded AISI 304 and Monel 400. Materials & Design, 40, 70-79. doi:10.1016/j.matdes.2012.03.024

Bhandari, J., Lau, S., Abbassi, R., Garaniya, V., Ojeda, R., Lisson, D., & Khan, F. (2017). Accelerated pitting corrosion test of 304 stainless steel using ASTM G48; Experimental investigation and concomitant challenges. Journal of Loss Prevention in the Process Industries, 47, 10-21. doi:10.1016/j.jlp.2017.02.025

Machado, J. P. S. E., Silva, C. C., Sobral-Santiago, A. V. C., Sant’Ana, H. B. de, & Farias, J. P. (2006). Effect of temperature on the level of corrosion caused by heavy petroleum on AISI 304 and AISI 444 stainless steel. Materials Research, 9(2), 137-142. doi:10.1590/s1516-14392006000200005

Madhusudhan Reddy, G., Mohandas, T., Sambasiva Rao, A., & Satyanarayana, V. V. (2005). INFLUENCE OF WELDING PROCESSES ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF DISSIMILAR AUSTENITIC-FERRITIC STAINLESS STEEL WELDS. Materials and Manufacturing Processes, 20(2), 147-173. doi:10.1081/amp-200041844

Cárcel-Carrasco, F., Pascual-Guillamón, M., & Pérez-Puig, M. (2016). Effects of X-rays Radiation on AISI 304 Stainless Steel Weldings with AISI 316L Filler Material: A Study of Resistance and Pitting Corrosion Behavior. Metals, 6(5), 102. doi:10.3390/met6050102

Takakuwa, O., & Soyama, H. (2015). Effect of Residual Stress on the Corrosion Behavior of Austenitic Stainless Steel. Advances in Chemical Engineering and Science, 05(01), 62-71. doi:10.4236/aces.2015.51007

Peguet, L., Malki, B., & Baroux, B. (2007). Influence of cold working on the pitting corrosion resistance of stainless steels. Corrosion Science, 49(4), 1933-1948. doi:10.1016/j.corsci.2006.08.021

Agrawal, A. K., & Singh, A. (2017). Limitations on the hardness increase in 316L stainless steel under dynamic plastic deformation. Materials Science and Engineering: A, 687, 306-312. doi:10.1016/j.msea.2017.01.066

Ghosh, S., Rana, V. P. S., Kain, V., Mittal, V., & Baveja, S. K. (2011). Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel. Materials & Design, 32(7), 3823-3831. doi:10.1016/j.matdes.2011.03.012

KOLOTYRKIN, J. M. (1963). Pitting Corrosion of Metals. CORROSION, 19(8), 261t-268t. doi:10.5006/0010-9312-19.8.261

SZKLARSKA-SMIALOWSKA, Z. (1971). Review of Literature on Pitting Corrosion Published Since 1960. CORROSION, 27(6), 223-233. doi:10.5006/0010-9312-27.6.223

SHIBATA, T., & TAKEYAMA, T. (1977). Stochastic Theory of Pitting Corrosion. CORROSION, 33(7), 243-251. doi:10.5006/0010-9312-33.7.243

Frankel, G. S. (1998). Pitting Corrosion of Metals: A Review of the Critical Factors. Journal of The Electrochemical Society, 145(6), 2186-2198. doi:10.1149/1.1838615

Nakai, T., Matsushita, H., & Yamamoto, N. (2006). Effect of pitting corrosion on the ultimate strength of steel plates subjected to in-plane compression and bending. Journal of Marine Science and Technology, 11(1), 52-64. doi:10.1007/s00773-005-0203-4

CHEN, W., VANBOVEN, G., & ROGGE, R. (2007). The role of residual stress in neutral pH stress corrosion cracking of pipeline steels – Part II: Crack dormancy. Acta Materialia, 55(1), 43-53. doi:10.1016/j.actamat.2006.07.021

Sánchez-Tovar, R., Montañés, M. T., & García-Antón, J. (2011). Effect of the micro-plasma arc welding technique on the microstructure and pitting corrosion of AISI 316L stainless steels in heavy LiBr brines. Corrosion Science, 53(8), 2598-2610. doi:10.1016/j.corsci.2011.04.019

Metastable pitting corrosion of stainless steel and the transition to stability. (1992). Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 341(1662), 531-559. doi:10.1098/rsta.1992.0114

Wang, J.-H., Su, C. C., & Szklarska-Smialowska, Z. (1988). Effects of Cl−Concentration and Temperature on Pitting of AISI 304 Stainless Steel. CORROSION, 44(10), 732-737. doi:10.5006/1.3584938

Pardo, A., Merino, M. C., Coy, A. E., Viejo, F., Arrabal, R., & Matykina, E. (2008). Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions. Corrosion Science, 50(6), 1796-1806. doi:10.1016/j.corsci.2008.04.005

Lin, C.-M., Tsai, H.-L., Cheng, C.-D., & Yang, C. (2012). Effect of repeated weld-repairs on microstructure, texture, impact properties and corrosion properties of AISI 304L stainless steel. Engineering Failure Analysis, 21, 9-20. doi:10.1016/j.engfailanal.2011.11.014

Sepe, R., Laiso, M., de Luca, A., & Caputo, F. (2017). Evaluation of Residual Stresses in Butt Welded Joint of Dissimilar Material by FEM. Key Engineering Materials, 754, 268-271. doi:10.4028/www.scientific.net/kem.754.268

He, S. (2018). Effect of Deformation-Induced Martensite on Protective Performance of Passive Film on 304 Stainless Steel. International Journal of Electrochemical Science, 4700-4719. doi:10.20964/2018.05.11

Unnikrishnan, R., Idury, K. S. N. S., Ismail, T. P., Bhadauria, A., Shekhawat, S. K., Khatirkar, R. K., & Sapate, S. G. (2014). Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments. Materials Characterization, 93, 10-23. doi:10.1016/j.matchar.2014.03.013

Abe, F. (2008). Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants. Science and Technology of Advanced Materials, 9(1), 013002. doi:10.1088/1468-6996/9/1/013002

Liang, W. (2003). Surface modification of AISI 304 austenitic stainless steel by plasma nitriding. Applied Surface Science, 211(1-4), 308-314. doi:10.1016/s0169-4332(03)00260-5

Lu, B. T., Chen, Z. K., Luo, J. L., Patchett, B. M., & Xu, Z. H. (2005). Pitting and stress corrosion cracking behavior in welded austenitic stainless steel. Electrochimica Acta, 50(6), 1391-1403. doi:10.1016/j.electacta.2004.08.036

Strehblow, H.-H. (1984). Breakdown of passivity and localized corrosion: Theoretical concepts and fundamental experimental results. Materials and Corrosion/Werkstoffe und Korrosion, 35(10), 437-448. doi:10.1002/maco.19840351002

Marcus, P., Maurice, V., & Strehblow, H.-H. (2008). Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure. Corrosion Science, 50(9), 2698-2704. doi:10.1016/j.corsci.2008.06.047

Soltis, J. (2015). Passivity breakdown, pit initiation and propagation of pits in metallic materials – Review. Corrosion Science, 90, 5-22. doi:10.1016/j.corsci.2014.10.006

Guan, K., Zhang, X., Gu, X., Cai, L., Xu, H., & Wang, Z. (2005). Failure of 304 stainless bellows expansion joint. Engineering Failure Analysis, 12(3), 387-399. doi:10.1016/j.engfailanal.2004.05.007

VANBOVEN, G., CHEN, W., & ROGGE, R. (2007). The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part I: Pitting and cracking occurrence. Acta Materialia, 55(1), 29-42. doi:10.1016/j.actamat.2006.08.037

Rhouma, A. B., Braham, C., Fitzpatrick, M. E., Leidion, J., & Sidhom, H. (2001). Effects of Surface Preparation on Pitting Resistance, Residual Stress, and Stress Corrosion Cracking in Austenitic Stainless Steels. Journal of Materials Engineering and Performance, 10(5), 507-514. doi:10.1361/105994901770344638

Peyre, P., Scherpereel, X., Berthe, L., Carboni, C., Fabbro, R., Béranger, G., & Lemaitre, C. (2000). Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Materials Science and Engineering: A, 280(2), 294-302. doi:10.1016/s0921-5093(99)00698-x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem