- -

Pitting corrosion in AISI 304 rolled stainless steel welding at different deformation levels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pitting corrosion in AISI 304 rolled stainless steel welding at different deformation levels

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cárcel Carrasco, Francisco Javier es_ES
dc.contributor.author Pascual Guillamón, Manuel es_ES
dc.contributor.author Solano García, Lorenzo es_ES
dc.contributor.author Salas Vicente, Fidel es_ES
dc.contributor.author Pérez Puig, Miguel Angel es_ES
dc.date.accessioned 2020-06-05T03:33:04Z
dc.date.available 2020-06-05T03:33:04Z
dc.date.issued 2019-08-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145417
dc.description.abstract [EN] This paper analyzes pitting corrosion at the weld zone and at the heat affected zone (HAZ) in AISI 304 rolled stainless steel welds. As the aforementioned material is one of the most frequently used types of stainless steel, it is needful to be aware of the mechanisms that lead to its deterioration, like corrosion, since it can cause failures or malfunction in a wide variety of products and facilities. For the experimental tests 1.5 mm thick AISI 304 stainless steel plates were welded and rolled to different thicknesses and after, the samples were subjected to mechanical and corrosion tests and to a micrograph study. Deformation stresses and other intrinsic metallurgic and physic-chemical transformations that occur during cold rolling and welding, and that are key factors in the anti-corrosion behavior of AISI 304 rolled stainless steel, have been observed and analyzed. A correlation has been found between cold work levels in test samples and number of pits after corrosion tests. es_ES
dc.description.sponsorship The authors deeply thank the Universitat Politècnica de València (Spain), for the support of this research. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Pitting corrosion es_ES
dc.subject Welding es_ES
dc.subject Cold rolling es_ES
dc.subject Deformation stress es_ES
dc.subject AISI 304 es_ES
dc.subject AISI 308L es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Pitting corrosion in AISI 304 rolled stainless steel welding at different deformation levels es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app9163265 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Cárcel Carrasco, FJ.; Pascual Guillamón, M.; Solano García, L.; Salas Vicente, F.; Pérez Puig, MA. (2019). Pitting corrosion in AISI 304 rolled stainless steel welding at different deformation levels. Applied Sciences. 9(16):1-12. https://doi.org/10.3390/app9163265 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app9163265 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 16 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\392048 es_ES
dc.contributor.funder Universitat Politècnica de València
dc.description.references Sathiya, P., Aravindan, S., & Noorul Haq, A. (2004). Mechanical and metallurgical properties of friction welded AISI 304 austenitic stainless steel. The International Journal of Advanced Manufacturing Technology, 26(5-6), 505-511. doi:10.1007/s00170-004-2018-6 es_ES
dc.description.references Gong, N., Wu, H.-B., Yu, Z.-C., Niu, G., & Zhang, D. (2017). Studying Mechanical Properties and Micro Deformation of Ultrafine-Grained Structures in Austenitic Stainless Steel. Metals, 7(6), 188. doi:10.3390/met7060188 es_ES
dc.description.references Fellinger, J., Citarella, R., Giannella, V., Lepore, M., Sepe, R., Czerwinski, M., … Stadler, R. (2018). Overview of fatigue life assessment of baffles in Wendelstein 7-X. Fusion Engineering and Design, 136, 292-297. doi:10.1016/j.fusengdes.2018.02.011 es_ES
dc.description.references Lv, J., Liang, T., & Luo, H. (2016). Influence of pre-deformation, sensitization and oxidation in high temperature water on corrosion resistance of AISI 304 stainless steel. Nuclear Engineering and Design, 309, 1-7. doi:10.1016/j.nucengdes.2016.09.004 es_ES
dc.description.references Hsu, C.-H., Chen, T.-C., Huang, R.-T., & Tsay, L.-W. (2017). Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray. Materials, 10(2), 187. doi:10.3390/ma10020187 es_ES
dc.description.references Devendranath Ramkumar, K., Arivazhagan, N., & Narayanan, S. (2012). Effect of filler materials on the performance of gas tungsten arc welded AISI 304 and Monel 400. Materials & Design, 40, 70-79. doi:10.1016/j.matdes.2012.03.024 es_ES
dc.description.references Bhandari, J., Lau, S., Abbassi, R., Garaniya, V., Ojeda, R., Lisson, D., & Khan, F. (2017). Accelerated pitting corrosion test of 304 stainless steel using ASTM G48; Experimental investigation and concomitant challenges. Journal of Loss Prevention in the Process Industries, 47, 10-21. doi:10.1016/j.jlp.2017.02.025 es_ES
dc.description.references Machado, J. P. S. E., Silva, C. C., Sobral-Santiago, A. V. C., Sant’Ana, H. B. de, & Farias, J. P. (2006). Effect of temperature on the level of corrosion caused by heavy petroleum on AISI 304 and AISI 444 stainless steel. Materials Research, 9(2), 137-142. doi:10.1590/s1516-14392006000200005 es_ES
dc.description.references Madhusudhan Reddy, G., Mohandas, T., Sambasiva Rao, A., & Satyanarayana, V. V. (2005). INFLUENCE OF WELDING PROCESSES ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF DISSIMILAR AUSTENITIC-FERRITIC STAINLESS STEEL WELDS. Materials and Manufacturing Processes, 20(2), 147-173. doi:10.1081/amp-200041844 es_ES
dc.description.references Cárcel-Carrasco, F., Pascual-Guillamón, M., & Pérez-Puig, M. (2016). Effects of X-rays Radiation on AISI 304 Stainless Steel Weldings with AISI 316L Filler Material: A Study of Resistance and Pitting Corrosion Behavior. Metals, 6(5), 102. doi:10.3390/met6050102 es_ES
dc.description.references Takakuwa, O., & Soyama, H. (2015). Effect of Residual Stress on the Corrosion Behavior of Austenitic Stainless Steel. Advances in Chemical Engineering and Science, 05(01), 62-71. doi:10.4236/aces.2015.51007 es_ES
dc.description.references Peguet, L., Malki, B., & Baroux, B. (2007). Influence of cold working on the pitting corrosion resistance of stainless steels. Corrosion Science, 49(4), 1933-1948. doi:10.1016/j.corsci.2006.08.021 es_ES
dc.description.references Agrawal, A. K., & Singh, A. (2017). Limitations on the hardness increase in 316L stainless steel under dynamic plastic deformation. Materials Science and Engineering: A, 687, 306-312. doi:10.1016/j.msea.2017.01.066 es_ES
dc.description.references Ghosh, S., Rana, V. P. S., Kain, V., Mittal, V., & Baveja, S. K. (2011). Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel. Materials & Design, 32(7), 3823-3831. doi:10.1016/j.matdes.2011.03.012 es_ES
dc.description.references KOLOTYRKIN, J. M. (1963). Pitting Corrosion of Metals. CORROSION, 19(8), 261t-268t. doi:10.5006/0010-9312-19.8.261 es_ES
dc.description.references SZKLARSKA-SMIALOWSKA, Z. (1971). Review of Literature on Pitting Corrosion Published Since 1960. CORROSION, 27(6), 223-233. doi:10.5006/0010-9312-27.6.223 es_ES
dc.description.references SHIBATA, T., & TAKEYAMA, T. (1977). Stochastic Theory of Pitting Corrosion. CORROSION, 33(7), 243-251. doi:10.5006/0010-9312-33.7.243 es_ES
dc.description.references Frankel, G. S. (1998). Pitting Corrosion of Metals: A Review of the Critical Factors. Journal of The Electrochemical Society, 145(6), 2186-2198. doi:10.1149/1.1838615 es_ES
dc.description.references Nakai, T., Matsushita, H., & Yamamoto, N. (2006). Effect of pitting corrosion on the ultimate strength of steel plates subjected to in-plane compression and bending. Journal of Marine Science and Technology, 11(1), 52-64. doi:10.1007/s00773-005-0203-4 es_ES
dc.description.references CHEN, W., VANBOVEN, G., & ROGGE, R. (2007). The role of residual stress in neutral pH stress corrosion cracking of pipeline steels – Part II: Crack dormancy. Acta Materialia, 55(1), 43-53. doi:10.1016/j.actamat.2006.07.021 es_ES
dc.description.references Sánchez-Tovar, R., Montañés, M. T., & García-Antón, J. (2011). Effect of the micro-plasma arc welding technique on the microstructure and pitting corrosion of AISI 316L stainless steels in heavy LiBr brines. Corrosion Science, 53(8), 2598-2610. doi:10.1016/j.corsci.2011.04.019 es_ES
dc.description.references Metastable pitting corrosion of stainless steel and the transition to stability. (1992). Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 341(1662), 531-559. doi:10.1098/rsta.1992.0114 es_ES
dc.description.references Wang, J.-H., Su, C. C., & Szklarska-Smialowska, Z. (1988). Effects of Cl−Concentration and Temperature on Pitting of AISI 304 Stainless Steel. CORROSION, 44(10), 732-737. doi:10.5006/1.3584938 es_ES
dc.description.references Pardo, A., Merino, M. C., Coy, A. E., Viejo, F., Arrabal, R., & Matykina, E. (2008). Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions. Corrosion Science, 50(6), 1796-1806. doi:10.1016/j.corsci.2008.04.005 es_ES
dc.description.references Lin, C.-M., Tsai, H.-L., Cheng, C.-D., & Yang, C. (2012). Effect of repeated weld-repairs on microstructure, texture, impact properties and corrosion properties of AISI 304L stainless steel. Engineering Failure Analysis, 21, 9-20. doi:10.1016/j.engfailanal.2011.11.014 es_ES
dc.description.references Sepe, R., Laiso, M., de Luca, A., & Caputo, F. (2017). Evaluation of Residual Stresses in Butt Welded Joint of Dissimilar Material by FEM. Key Engineering Materials, 754, 268-271. doi:10.4028/www.scientific.net/kem.754.268 es_ES
dc.description.references He, S. (2018). Effect of Deformation-Induced Martensite on Protective Performance of Passive Film on 304 Stainless Steel. International Journal of Electrochemical Science, 4700-4719. doi:10.20964/2018.05.11 es_ES
dc.description.references Unnikrishnan, R., Idury, K. S. N. S., Ismail, T. P., Bhadauria, A., Shekhawat, S. K., Khatirkar, R. K., & Sapate, S. G. (2014). Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments. Materials Characterization, 93, 10-23. doi:10.1016/j.matchar.2014.03.013 es_ES
dc.description.references Abe, F. (2008). Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants. Science and Technology of Advanced Materials, 9(1), 013002. doi:10.1088/1468-6996/9/1/013002 es_ES
dc.description.references Liang, W. (2003). Surface modification of AISI 304 austenitic stainless steel by plasma nitriding. Applied Surface Science, 211(1-4), 308-314. doi:10.1016/s0169-4332(03)00260-5 es_ES
dc.description.references Lu, B. T., Chen, Z. K., Luo, J. L., Patchett, B. M., & Xu, Z. H. (2005). Pitting and stress corrosion cracking behavior in welded austenitic stainless steel. Electrochimica Acta, 50(6), 1391-1403. doi:10.1016/j.electacta.2004.08.036 es_ES
dc.description.references Strehblow, H.-H. (1984). Breakdown of passivity and localized corrosion: Theoretical concepts and fundamental experimental results. Materials and Corrosion/Werkstoffe und Korrosion, 35(10), 437-448. doi:10.1002/maco.19840351002 es_ES
dc.description.references Marcus, P., Maurice, V., & Strehblow, H.-H. (2008). Localized corrosion (pitting): A model of passivity breakdown including the role of the oxide layer nanostructure. Corrosion Science, 50(9), 2698-2704. doi:10.1016/j.corsci.2008.06.047 es_ES
dc.description.references Soltis, J. (2015). Passivity breakdown, pit initiation and propagation of pits in metallic materials – Review. Corrosion Science, 90, 5-22. doi:10.1016/j.corsci.2014.10.006 es_ES
dc.description.references Guan, K., Zhang, X., Gu, X., Cai, L., Xu, H., & Wang, Z. (2005). Failure of 304 stainless bellows expansion joint. Engineering Failure Analysis, 12(3), 387-399. doi:10.1016/j.engfailanal.2004.05.007 es_ES
dc.description.references VANBOVEN, G., CHEN, W., & ROGGE, R. (2007). The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part I: Pitting and cracking occurrence. Acta Materialia, 55(1), 29-42. doi:10.1016/j.actamat.2006.08.037 es_ES
dc.description.references Rhouma, A. B., Braham, C., Fitzpatrick, M. E., Leidion, J., & Sidhom, H. (2001). Effects of Surface Preparation on Pitting Resistance, Residual Stress, and Stress Corrosion Cracking in Austenitic Stainless Steels. Journal of Materials Engineering and Performance, 10(5), 507-514. doi:10.1361/105994901770344638 es_ES
dc.description.references Peyre, P., Scherpereel, X., Berthe, L., Carboni, C., Fabbro, R., Béranger, G., & Lemaitre, C. (2000). Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Materials Science and Engineering: A, 280(2), 294-302. doi:10.1016/s0921-5093(99)00698-x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem