- -

Stellarator microinstabilities and turbulence at low magnetic shear

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stellarator microinstabilities and turbulence at low magnetic shear

Mostrar el registro completo del ítem

Faber, BJ.; Pueschel, MJ.; Terry, PW.; Hegna, CC.; Roman, JE. (2018). Stellarator microinstabilities and turbulence at low magnetic shear. Journal of Plasma Physics. 84(5). https://doi.org/10.1017/S0022377818001022

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145420

Ficheros en el ítem

Metadatos del ítem

Título: Stellarator microinstabilities and turbulence at low magnetic shear
Autor: Faber, B. J. Pueschel, M. J. Terry, P. W. Hegna, C. C. Roman, Jose E.
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Gyrokinetic simulations of drift waves in low-magnetic-shear stellarators reveal that simulation domains comprised of multiple turns can be required to properly resolve critical mode structures important in saturation ...[+]
Palabras clave: Plasma instabilities , Plasma nonlinear phenomena , Plasma simulation
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Plasma Physics. (issn: 0022-3778 )
DOI: 10.1017/S0022377818001022
Editorial:
Cambridge University Press
Versión del editor: https://doi.org/10.1017/S0022377818001022
Código del Proyecto:
info:eu-repo/grantAgreement/DOE//DE-FG02-99ER54546/
info:eu-repo/grantAgreement/DOE//DE-FG02-93ER54222/
info:eu-repo/grantAgreement/DOE//DE-FG02-89ER53291/
info:eu-repo/grantAgreement/DOE//DE-AC02-05CH11231/
info:eu-repo/grantAgreement/MINECO//TIN2016-75985-P/ES/SOLVERS DE VALORES PROPIOS ALTAMENTE ESCALABLES EN EL CONTEXTO DE LA BIBLIOTECA SLEPC/
Agradecimientos:
The authors would like to thank F. Jenko for insightful questions that motivated this research and J. Smoniewski and J. H. E. Proll for engaging discussions. This work was supported by US DoE grant nos. DE-FG02-99ER54546, ...[+]
Tipo: Artículo

References

Connor, J. W., & Hastie, R. J. (2004). Microstability in tokamaks with low magnetic shear. Plasma Physics and Controlled Fusion, 46(10), 1501-1535. doi:10.1088/0741-3335/46/10/001

Terry, P. W., Faber, B. J., Hegna, C. C., Mirnov, V. V., Pueschel, M. J., & Whelan, G. G. (2018). Saturation scalings of toroidal ion temperature gradient turbulence. Physics of Plasmas, 25(1), 012308. doi:10.1063/1.5007062

Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019 [+]
Connor, J. W., & Hastie, R. J. (2004). Microstability in tokamaks with low magnetic shear. Plasma Physics and Controlled Fusion, 46(10), 1501-1535. doi:10.1088/0741-3335/46/10/001

Terry, P. W., Faber, B. J., Hegna, C. C., Mirnov, V. V., Pueschel, M. J., & Whelan, G. G. (2018). Saturation scalings of toroidal ion temperature gradient turbulence. Physics of Plasmas, 25(1), 012308. doi:10.1063/1.5007062

Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019

Friedman, B., Carter, T. A., Umansky, M. V., Schaffner, D., & Joseph, I. (2013). Nonlinear instability in simulations of Large Plasma Device turbulence. Physics of Plasmas, 20(5), 055704. doi:10.1063/1.4805084

Eiermann, M., & Ernst, O. G. (2006). A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions. SIAM Journal on Numerical Analysis, 44(6), 2481-2504. doi:10.1137/050633846

Connor, J. W., Hastie, R. J., & Taylor, J. B. (1978). Shear, Periodicity, and Plasma Ballooning Modes. Physical Review Letters, 40(6), 396-399. doi:10.1103/physrevlett.40.396

Xanthopoulos, P., & Jenko, F. (2007). Gyrokinetic analysis of linear microinstabilities for the stellarator Wendelstein 7-X. Physics of Plasmas, 14(4), 042501. doi:10.1063/1.2714328

Hegna, C. C., & Hudson, S. R. (2001). Loss of Second-Ballooning Stability in Three-Dimensional Equilibria. Physical Review Letters, 87(3). doi:10.1103/physrevlett.87.035001

Hatch, D. R., Terry, P. W., Jenko, F., Merz, F., Pueschel, M. J., Nevins, W. M., & Wang, E. (2011). Role of subdominant stable modes in plasma microturbulence. Physics of Plasmas, 18(5), 055706. doi:10.1063/1.3563536

Faber, B. J., Pueschel, M. J., Proll, J. H. E., Xanthopoulos, P., Terry, P. W., Hegna, C. C., … Talmadge, J. N. (2015). Gyrokinetic studies of trapped electron mode turbulence in the Helically Symmetric eXperiment stellarator. Physics of Plasmas, 22(7), 072305. doi:10.1063/1.4926510

Sugama, H., & Watanabe, T.-H. (2006). Collisionless damping of zonal flows in helical systems. Physics of Plasmas, 13(1), 012501. doi:10.1063/1.2149311

Hegna, C. C., Terry, P. W., & Faber, B. J. (2018). Theory of ITG turbulent saturation in stellarators: Identifying mechanisms to reduce turbulent transport. Physics of Plasmas, 25(2), 022511. doi:10.1063/1.5018198

Zocco, A., Xanthopoulos, P., Doerk, H., Connor, J. W., & Helander, P. (2018). Threshold for the destabilisation of the ion-temperature-gradient mode in magnetically confined toroidal plasmas. Journal of Plasma Physics, 84(1). doi:10.1017/s0022377817000988

Merz, F. 2008 Gyrokinetic simulation of multimode plasma turbulence. PhD thesis.

Dorland, W., Jenko, F., Kotschenreuther, M., & Rogers, B. N. (2000). Electron Temperature Gradient Turbulence. Physical Review Letters, 85(26), 5579-5582. doi:10.1103/physrevlett.85.5579

Xanthopoulos, P., Cooper, W. A., Jenko, F., Turkin, Y., Runov, A., & Geiger, J. (2009). A geometry interface for gyrokinetic microturbulence investigations in toroidal configurations. Physics of Plasmas, 16(8), 082303. doi:10.1063/1.3187907

Dinklage, A., Beidler, C. D., Helander, P., Fuchert, G., Maaßberg, H., … Zhang, D. (2018). Magnetic configuration effects on the Wendelstein 7-X stellarator. Nature Physics, 14(8), 855-860. doi:10.1038/s41567-018-0141-9

Hatch, D. R., Kotschenreuther, M., Mahajan, S., Valanju, P., Jenko, F., Told, D., … Saarelma, S. (2016). Microtearing turbulence limiting the JET-ILW pedestal. Nuclear Fusion, 56(10), 104003. doi:10.1088/0029-5515/56/10/104003

Hatch, D. R., Terry, P. W., Jenko, F., Merz, F., & Nevins, W. M. (2011). Saturation of Gyrokinetic Turbulence through Damped Eigenmodes. Physical Review Letters, 106(11). doi:10.1103/physrevlett.106.115003

Proll, J. H. E., Xanthopoulos, P., & Helander, P. (2013). Collisionless microinstabilities in stellarators. II. Numerical simulations. Physics of Plasmas, 20(12), 122506. doi:10.1063/1.4846835

Whelan, G. G., Pueschel, M. J., & Terry, P. W. (2018). Nonlinear Electromagnetic Stabilization of Plasma Microturbulence. Physical Review Letters, 120(17). doi:10.1103/physrevlett.120.175002

Friedman, B., & Carter, T. A. (2014). Linear Technique to Understand Non-Normal Turbulence Applied to a Magnetized Plasma. Physical Review Letters, 113(2). doi:10.1103/physrevlett.113.025003

High mode number stability of an axisymmetric toroidal plasma. (1979). Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 365(1720), 1-17. doi:10.1098/rspa.1979.0001

Boozer, A. H. (1998). What is a stellarator? Physics of Plasmas, 5(5), 1647-1655. doi:10.1063/1.872833

Boozer, A. H. (1981). Plasma equilibrium with rational magnetic surfaces. Physics of Fluids, 24(11), 1999. doi:10.1063/1.863297

Dewar, R. L. (1983). Ballooning mode spectrum in general toroidal systems. Physics of Fluids, 26(10), 3038. doi:10.1063/1.864028

Anderson, F. S. B., Almagri, A. F., Anderson, D. T., Matthews, P. G., Talmadge, J. N., & Shohet, J. L. (1995). The Helically Symmetric Experiment, (HSX) Goals, Design and Status. Fusion Technology, 27(3T), 273-277. doi:10.13182/fst95-a11947086

Bhattacharjee, A. (1983). Drift waves in a straight stellarator. Physics of Fluids, 26(4), 880. doi:10.1063/1.864229

Baumgaertel, J. A., Belli, E. A., Dorland, W., Guttenfelder, W., Hammett, G. W., Mikkelsen, D. R., … Xanthopoulos, P. (2011). Simulating gyrokinetic microinstabilities in stellarator geometry with GS2. Physics of Plasmas, 18(12), 122301. doi:10.1063/1.3662064

Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., … Whaley, R. C. (1997). ScaLAPACK Users’ Guide. doi:10.1137/1.9780898719642

Martin, M. F., Landreman, M., Xanthopoulos, P., Mandell, N. R., & Dorland, W. (2018). The parallel boundary condition for turbulence simulations in low magnetic shear devices. Plasma Physics and Controlled Fusion, 60(9), 095008. doi:10.1088/1361-6587/aad38a

Plunk, G. G., Xanthopoulos, P., & Helander, P. (2017). Distinct Turbulence Saturation Regimes in Stellarators. Physical Review Letters, 118(10). doi:10.1103/physrevlett.118.105002

Candy, J., Waltz, R. E., & Rosenbluth, M. N. (2004). Smoothness of turbulent transport across a minimum-q surface. Physics of Plasmas, 11(5), 1879-1890. doi:10.1063/1.1689967

Nagaoka, K., Takahashi, H., Murakami, S., Nakano, H., Takeiri, Y., Tsuchiya, H., … Komori, A. (2015). Integrated discharge scenario for high-temperature helical plasma in LHD. Nuclear Fusion, 55(11), 113020. doi:10.1088/0029-5515/55/11/113020

Canik, J. M., Anderson, D. T., Anderson, F. S. B., Likin, K. M., Talmadge, J. N., & Zhai, K. (2007). Experimental Demonstration of Improved Neoclassical Transport with Quasihelical Symmetry. Physical Review Letters, 98(8). doi:10.1103/physrevlett.98.085002

Dimits, A. M., Williams, T. J., Byers, J. A., & Cohen, B. I. (1996). Scalings of Ion-Temperature-Gradient-Driven Anomalous Transport in Tokamaks. Physical Review Letters, 77(1), 71-74. doi:10.1103/physrevlett.77.71

Beer, M. A., Cowley, S. C., & Hammett, G. W. (1995). Field‐aligned coordinates for nonlinear simulations of tokamak turbulence. Physics of Plasmas, 2(7), 2687-2700. doi:10.1063/1.871232

Gates, D. A., Anderson, D., Anderson, S., Zarnstorff, M., Spong, D. A., Weitzner, H., … Glasser, A. H. (2018). Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee. Journal of Fusion Energy, 37(1), 51-94. doi:10.1007/s10894-018-0152-7

Helander, P. (2014). Theory of plasma confinement in non-axisymmetric magnetic fields. Reports on Progress in Physics, 77(8), 087001. doi:10.1088/0034-4885/77/8/087001

Peeters, A. G., Camenen, Y., Casson, F. J., Hornsby, W. A., Snodin, A. P., Strintzi, D., & Szepesi, G. (2009). The nonlinear gyro-kinetic flux tube code GKW. Computer Physics Communications, 180(12), 2650-2672. doi:10.1016/j.cpc.2009.07.001

Jenko, F., Dorland, W., Kotschenreuther, M., & Rogers, B. N. (2000). Electron temperature gradient driven turbulence. Physics of Plasmas, 7(5), 1904-1910. doi:10.1063/1.874014

Fulton, D. P., Lin, Z., Holod, I., & Xiao, Y. (2014). Microturbulence in DIII-D tokamak pedestal. I. Electrostatic instabilities. Physics of Plasmas, 21(4), 042110. doi:10.1063/1.4871387

Bañón Navarro, A., Morel, P., Albrecht-Marc, M., Carati, D., Merz, F., Görler, T., & Jenko, F. (2011). Free energy balance in gyrokinetic turbulence. Physics of Plasmas, 18(9), 092303. doi:10.1063/1.3632077

Xanthopoulos, P., Merz, F., Görler, T., & Jenko, F. (2007). Nonlinear Gyrokinetic Simulations of Ion-Temperature-Gradient Turbulence for the Optimized Wendelstein 7-X Stellarator. Physical Review Letters, 99(3). doi:10.1103/physrevlett.99.035002

Goldhirsch, L., Orszag, S. A., & Maulik, B. K. (1987). An efficient method for computing leading eigenvalues and eigenvectors of large asymmetric matrices. Journal of Scientific Computing, 2(1), 33-58. doi:10.1007/bf01061511

Plunk, G. G., Helander, P., Xanthopoulos, P., & Connor, J. W. (2014). Collisionless microinstabilities in stellarators. III. The ion-temperature-gradient mode. Physics of Plasmas, 21(3), 032112. doi:10.1063/1.4868412

Nadeem, M., Rafiq, T., & Persson, M. (2001). Local magnetic shear and drift waves in stellarators. Physics of Plasmas, 8(10), 4375-4385. doi:10.1063/1.1396842

Candy, J., & Waltz, R. E. (2003). An Eulerian gyrokinetic-Maxwell solver. Journal of Computational Physics, 186(2), 545-581. doi:10.1016/s0021-9991(03)00079-2

Al-Mohy, A. H., & Higham, N. J. (2010). A New Scaling and Squaring Algorithm for the Matrix Exponential. SIAM Journal on Matrix Analysis and Applications, 31(3), 970-989. doi:10.1137/09074721x

Terry, P. W., Baver, D. A., & Gupta, S. (2006). Role of stable eigenmodes in saturated local plasma turbulence. Physics of Plasmas, 13(2), 022307. doi:10.1063/1.2168453

Higham, N. J. (2008). Functions of Matrices. doi:10.1137/1.9780898717778

Cuthbert, P., & Dewar, R. L. (2000). Anderson-localized ballooning modes in general toroidal plasmas. Physics of Plasmas, 7(6), 2302-2305. doi:10.1063/1.874064

Waltz, R. E., & Boozer, A. H. (1993). Local shear in general magnetic stellarator geometry. Physics of Fluids B: Plasma Physics, 5(7), 2201-2205. doi:10.1063/1.860754

Pueschel, M. J., Faber, B. J., Citrin, J., Hegna, C. C., Terry, P. W., & Hatch, D. R. (2016). Stellarator Turbulence: Subdominant Eigenmodes and Quasilinear Modeling. Physical Review Letters, 116(8). doi:10.1103/physrevlett.116.085001

Pearlstein, L. D., & Berk, H. L. (1969). Universal Eigenmode in a Strongly Sheared Magnetic Field. Physical Review Letters, 23(5), 220-222. doi:10.1103/physrevlett.23.220

Meerbergen, K., & Sadkane, M. (1999). Using Krylov approximations to the matrix exponential operator in Davidson’s method. Applied Numerical Mathematics, 31(3), 331-351. doi:10.1016/s0168-9274(98)00134-2

Chen, Y., Parker, S. E., Wan, W., & Bravenec, R. (2013). Benchmarking gyrokinetic simulations in a toroidal flux-tube. Physics of Plasmas, 20(9), 092511. doi:10.1063/1.4821982

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem