- -

Stellarator microinstabilities and turbulence at low magnetic shear

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stellarator microinstabilities and turbulence at low magnetic shear

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Faber, B. J. es_ES
dc.contributor.author Pueschel, M. J. es_ES
dc.contributor.author Terry, P. W. es_ES
dc.contributor.author Hegna, C. C. es_ES
dc.contributor.author Roman, Jose E. es_ES
dc.date.accessioned 2020-06-05T03:33:12Z
dc.date.available 2020-06-05T03:33:12Z
dc.date.issued 2018-10 es_ES
dc.identifier.issn 0022-3778 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145420
dc.description.abstract [EN] Gyrokinetic simulations of drift waves in low-magnetic-shear stellarators reveal that simulation domains comprised of multiple turns can be required to properly resolve critical mode structures important in saturation dynamics. Marginally stable eigenmodes important in saturation of ion temperature gradient modes and trapped electron modes in the Helically Symmetric Experiment (HSX) stellarator are observed to have two scales, with the envelope scale determined by the properties of the local magnetic shear and an inner scale determined by the interplay between the local shear and magnetic field-line curvature. Properly resolving these modes removes spurious growth rates that arise for extended modes in zero-magnetic-shear approximations, enabling use of a zero-magnetic-shear technique with smaller simulation domains and attendant cost savings. Analysis of subdominant modes in trapped electron mode (TEM)-driven turbulence reveals that the extended marginally stable modes play an important role in the nonlinear dynamics, and suggests that the properties induced by low magnetic shear may be exploited to provide another route for turbulence saturation. es_ES
dc.description.sponsorship The authors would like to thank F. Jenko for insightful questions that motivated this research and J. Smoniewski and J. H. E. Proll for engaging discussions. This work was supported by US DoE grant nos. DE-FG02-99ER54546, DE-FG02-93ER54222 and DE-FG02-89ER53291. J.E.R. was supported by Agencia Estatal de Investigacion (AEI) under grant TIN2016-75985-P, which includes European Commission ERDF funds. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility operated under contract no. DE-AC02-05CH11231. This research was performed using the compute resources and assistance of the UW-Madison Center For High Throughput Computing (CHTC) in the Department of Computer Sciences. The CHTC is supported by UW-Madison, the Advanced Computing Initiative, the Wisconsin Alumni Research Foundation, the Wisconsin Institutes for Discovery and the National Science Foundation, and is an active member of the Open Science Grid, which is supported by the National Science Foundation and the US Department of Energy's Office of Science. es_ES
dc.language Inglés es_ES
dc.publisher Cambridge University Press es_ES
dc.relation.ispartof Journal of Plasma Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Plasma instabilities es_ES
dc.subject Plasma nonlinear phenomena es_ES
dc.subject Plasma simulation es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Stellarator microinstabilities and turbulence at low magnetic shear es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1017/S0022377818001022 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-FG02-99ER54546/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-FG02-93ER54222/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-FG02-89ER53291/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC02-05CH11231/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-75985-P/ES/SOLVERS DE VALORES PROPIOS ALTAMENTE ESCALABLES EN EL CONTEXTO DE LA BIBLIOTECA SLEPC/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Faber, BJ.; Pueschel, MJ.; Terry, PW.; Hegna, CC.; Roman, JE. (2018). Stellarator microinstabilities and turbulence at low magnetic shear. Journal of Plasma Physics. 84(5). https://doi.org/10.1017/S0022377818001022 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1017/S0022377818001022 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 84 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\373619 es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Connor, J. W., & Hastie, R. J. (2004). Microstability in tokamaks with low magnetic shear. Plasma Physics and Controlled Fusion, 46(10), 1501-1535. doi:10.1088/0741-3335/46/10/001 es_ES
dc.description.references Terry, P. W., Faber, B. J., Hegna, C. C., Mirnov, V. V., Pueschel, M. J., & Whelan, G. G. (2018). Saturation scalings of toroidal ion temperature gradient turbulence. Physics of Plasmas, 25(1), 012308. doi:10.1063/1.5007062 es_ES
dc.description.references Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019 es_ES
dc.description.references Friedman, B., Carter, T. A., Umansky, M. V., Schaffner, D., & Joseph, I. (2013). Nonlinear instability in simulations of Large Plasma Device turbulence. Physics of Plasmas, 20(5), 055704. doi:10.1063/1.4805084 es_ES
dc.description.references Eiermann, M., & Ernst, O. G. (2006). A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions. SIAM Journal on Numerical Analysis, 44(6), 2481-2504. doi:10.1137/050633846 es_ES
dc.description.references Connor, J. W., Hastie, R. J., & Taylor, J. B. (1978). Shear, Periodicity, and Plasma Ballooning Modes. Physical Review Letters, 40(6), 396-399. doi:10.1103/physrevlett.40.396 es_ES
dc.description.references Xanthopoulos, P., & Jenko, F. (2007). Gyrokinetic analysis of linear microinstabilities for the stellarator Wendelstein 7-X. Physics of Plasmas, 14(4), 042501. doi:10.1063/1.2714328 es_ES
dc.description.references Hegna, C. C., & Hudson, S. R. (2001). Loss of Second-Ballooning Stability in Three-Dimensional Equilibria. Physical Review Letters, 87(3). doi:10.1103/physrevlett.87.035001 es_ES
dc.description.references Hatch, D. R., Terry, P. W., Jenko, F., Merz, F., Pueschel, M. J., Nevins, W. M., & Wang, E. (2011). Role of subdominant stable modes in plasma microturbulence. Physics of Plasmas, 18(5), 055706. doi:10.1063/1.3563536 es_ES
dc.description.references Faber, B. J., Pueschel, M. J., Proll, J. H. E., Xanthopoulos, P., Terry, P. W., Hegna, C. C., … Talmadge, J. N. (2015). Gyrokinetic studies of trapped electron mode turbulence in the Helically Symmetric eXperiment stellarator. Physics of Plasmas, 22(7), 072305. doi:10.1063/1.4926510 es_ES
dc.description.references Sugama, H., & Watanabe, T.-H. (2006). Collisionless damping of zonal flows in helical systems. Physics of Plasmas, 13(1), 012501. doi:10.1063/1.2149311 es_ES
dc.description.references Hegna, C. C., Terry, P. W., & Faber, B. J. (2018). Theory of ITG turbulent saturation in stellarators: Identifying mechanisms to reduce turbulent transport. Physics of Plasmas, 25(2), 022511. doi:10.1063/1.5018198 es_ES
dc.description.references Zocco, A., Xanthopoulos, P., Doerk, H., Connor, J. W., & Helander, P. (2018). Threshold for the destabilisation of the ion-temperature-gradient mode in magnetically confined toroidal plasmas. Journal of Plasma Physics, 84(1). doi:10.1017/s0022377817000988 es_ES
dc.description.references Merz, F. 2008 Gyrokinetic simulation of multimode plasma turbulence. PhD thesis. es_ES
dc.description.references Dorland, W., Jenko, F., Kotschenreuther, M., & Rogers, B. N. (2000). Electron Temperature Gradient Turbulence. Physical Review Letters, 85(26), 5579-5582. doi:10.1103/physrevlett.85.5579 es_ES
dc.description.references Xanthopoulos, P., Cooper, W. A., Jenko, F., Turkin, Y., Runov, A., & Geiger, J. (2009). A geometry interface for gyrokinetic microturbulence investigations in toroidal configurations. Physics of Plasmas, 16(8), 082303. doi:10.1063/1.3187907 es_ES
dc.description.references Dinklage, A., Beidler, C. D., Helander, P., Fuchert, G., Maaßberg, H., … Zhang, D. (2018). Magnetic configuration effects on the Wendelstein 7-X stellarator. Nature Physics, 14(8), 855-860. doi:10.1038/s41567-018-0141-9 es_ES
dc.description.references Hatch, D. R., Kotschenreuther, M., Mahajan, S., Valanju, P., Jenko, F., Told, D., … Saarelma, S. (2016). Microtearing turbulence limiting the JET-ILW pedestal. Nuclear Fusion, 56(10), 104003. doi:10.1088/0029-5515/56/10/104003 es_ES
dc.description.references Hatch, D. R., Terry, P. W., Jenko, F., Merz, F., & Nevins, W. M. (2011). Saturation of Gyrokinetic Turbulence through Damped Eigenmodes. Physical Review Letters, 106(11). doi:10.1103/physrevlett.106.115003 es_ES
dc.description.references Proll, J. H. E., Xanthopoulos, P., & Helander, P. (2013). Collisionless microinstabilities in stellarators. II. Numerical simulations. Physics of Plasmas, 20(12), 122506. doi:10.1063/1.4846835 es_ES
dc.description.references Whelan, G. G., Pueschel, M. J., & Terry, P. W. (2018). Nonlinear Electromagnetic Stabilization of Plasma Microturbulence. Physical Review Letters, 120(17). doi:10.1103/physrevlett.120.175002 es_ES
dc.description.references Friedman, B., & Carter, T. A. (2014). Linear Technique to Understand Non-Normal Turbulence Applied to a Magnetized Plasma. Physical Review Letters, 113(2). doi:10.1103/physrevlett.113.025003 es_ES
dc.description.references High mode number stability of an axisymmetric toroidal plasma. (1979). Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 365(1720), 1-17. doi:10.1098/rspa.1979.0001 es_ES
dc.description.references Boozer, A. H. (1998). What is a stellarator? Physics of Plasmas, 5(5), 1647-1655. doi:10.1063/1.872833 es_ES
dc.description.references Boozer, A. H. (1981). Plasma equilibrium with rational magnetic surfaces. Physics of Fluids, 24(11), 1999. doi:10.1063/1.863297 es_ES
dc.description.references Dewar, R. L. (1983). Ballooning mode spectrum in general toroidal systems. Physics of Fluids, 26(10), 3038. doi:10.1063/1.864028 es_ES
dc.description.references Anderson, F. S. B., Almagri, A. F., Anderson, D. T., Matthews, P. G., Talmadge, J. N., & Shohet, J. L. (1995). The Helically Symmetric Experiment, (HSX) Goals, Design and Status. Fusion Technology, 27(3T), 273-277. doi:10.13182/fst95-a11947086 es_ES
dc.description.references Bhattacharjee, A. (1983). Drift waves in a straight stellarator. Physics of Fluids, 26(4), 880. doi:10.1063/1.864229 es_ES
dc.description.references Baumgaertel, J. A., Belli, E. A., Dorland, W., Guttenfelder, W., Hammett, G. W., Mikkelsen, D. R., … Xanthopoulos, P. (2011). Simulating gyrokinetic microinstabilities in stellarator geometry with GS2. Physics of Plasmas, 18(12), 122301. doi:10.1063/1.3662064 es_ES
dc.description.references Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., … Whaley, R. C. (1997). ScaLAPACK Users’ Guide. doi:10.1137/1.9780898719642 es_ES
dc.description.references Martin, M. F., Landreman, M., Xanthopoulos, P., Mandell, N. R., & Dorland, W. (2018). The parallel boundary condition for turbulence simulations in low magnetic shear devices. Plasma Physics and Controlled Fusion, 60(9), 095008. doi:10.1088/1361-6587/aad38a es_ES
dc.description.references Plunk, G. G., Xanthopoulos, P., & Helander, P. (2017). Distinct Turbulence Saturation Regimes in Stellarators. Physical Review Letters, 118(10). doi:10.1103/physrevlett.118.105002 es_ES
dc.description.references Candy, J., Waltz, R. E., & Rosenbluth, M. N. (2004). Smoothness of turbulent transport across a minimum-q surface. Physics of Plasmas, 11(5), 1879-1890. doi:10.1063/1.1689967 es_ES
dc.description.references Nagaoka, K., Takahashi, H., Murakami, S., Nakano, H., Takeiri, Y., Tsuchiya, H., … Komori, A. (2015). Integrated discharge scenario for high-temperature helical plasma in LHD. Nuclear Fusion, 55(11), 113020. doi:10.1088/0029-5515/55/11/113020 es_ES
dc.description.references Canik, J. M., Anderson, D. T., Anderson, F. S. B., Likin, K. M., Talmadge, J. N., & Zhai, K. (2007). Experimental Demonstration of Improved Neoclassical Transport with Quasihelical Symmetry. Physical Review Letters, 98(8). doi:10.1103/physrevlett.98.085002 es_ES
dc.description.references Dimits, A. M., Williams, T. J., Byers, J. A., & Cohen, B. I. (1996). Scalings of Ion-Temperature-Gradient-Driven Anomalous Transport in Tokamaks. Physical Review Letters, 77(1), 71-74. doi:10.1103/physrevlett.77.71 es_ES
dc.description.references Beer, M. A., Cowley, S. C., & Hammett, G. W. (1995). Field‐aligned coordinates for nonlinear simulations of tokamak turbulence. Physics of Plasmas, 2(7), 2687-2700. doi:10.1063/1.871232 es_ES
dc.description.references Gates, D. A., Anderson, D., Anderson, S., Zarnstorff, M., Spong, D. A., Weitzner, H., … Glasser, A. H. (2018). Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee. Journal of Fusion Energy, 37(1), 51-94. doi:10.1007/s10894-018-0152-7 es_ES
dc.description.references Helander, P. (2014). Theory of plasma confinement in non-axisymmetric magnetic fields. Reports on Progress in Physics, 77(8), 087001. doi:10.1088/0034-4885/77/8/087001 es_ES
dc.description.references Peeters, A. G., Camenen, Y., Casson, F. J., Hornsby, W. A., Snodin, A. P., Strintzi, D., & Szepesi, G. (2009). The nonlinear gyro-kinetic flux tube code GKW. Computer Physics Communications, 180(12), 2650-2672. doi:10.1016/j.cpc.2009.07.001 es_ES
dc.description.references Jenko, F., Dorland, W., Kotschenreuther, M., & Rogers, B. N. (2000). Electron temperature gradient driven turbulence. Physics of Plasmas, 7(5), 1904-1910. doi:10.1063/1.874014 es_ES
dc.description.references Fulton, D. P., Lin, Z., Holod, I., & Xiao, Y. (2014). Microturbulence in DIII-D tokamak pedestal. I. Electrostatic instabilities. Physics of Plasmas, 21(4), 042110. doi:10.1063/1.4871387 es_ES
dc.description.references Bañón Navarro, A., Morel, P., Albrecht-Marc, M., Carati, D., Merz, F., Görler, T., & Jenko, F. (2011). Free energy balance in gyrokinetic turbulence. Physics of Plasmas, 18(9), 092303. doi:10.1063/1.3632077 es_ES
dc.description.references Xanthopoulos, P., Merz, F., Görler, T., & Jenko, F. (2007). Nonlinear Gyrokinetic Simulations of Ion-Temperature-Gradient Turbulence for the Optimized Wendelstein 7-X Stellarator. Physical Review Letters, 99(3). doi:10.1103/physrevlett.99.035002 es_ES
dc.description.references Goldhirsch, L., Orszag, S. A., & Maulik, B. K. (1987). An efficient method for computing leading eigenvalues and eigenvectors of large asymmetric matrices. Journal of Scientific Computing, 2(1), 33-58. doi:10.1007/bf01061511 es_ES
dc.description.references Plunk, G. G., Helander, P., Xanthopoulos, P., & Connor, J. W. (2014). Collisionless microinstabilities in stellarators. III. The ion-temperature-gradient mode. Physics of Plasmas, 21(3), 032112. doi:10.1063/1.4868412 es_ES
dc.description.references Nadeem, M., Rafiq, T., & Persson, M. (2001). Local magnetic shear and drift waves in stellarators. Physics of Plasmas, 8(10), 4375-4385. doi:10.1063/1.1396842 es_ES
dc.description.references Candy, J., & Waltz, R. E. (2003). An Eulerian gyrokinetic-Maxwell solver. Journal of Computational Physics, 186(2), 545-581. doi:10.1016/s0021-9991(03)00079-2 es_ES
dc.description.references Al-Mohy, A. H., & Higham, N. J. (2010). A New Scaling and Squaring Algorithm for the Matrix Exponential. SIAM Journal on Matrix Analysis and Applications, 31(3), 970-989. doi:10.1137/09074721x es_ES
dc.description.references Terry, P. W., Baver, D. A., & Gupta, S. (2006). Role of stable eigenmodes in saturated local plasma turbulence. Physics of Plasmas, 13(2), 022307. doi:10.1063/1.2168453 es_ES
dc.description.references Higham, N. J. (2008). Functions of Matrices. doi:10.1137/1.9780898717778 es_ES
dc.description.references Cuthbert, P., & Dewar, R. L. (2000). Anderson-localized ballooning modes in general toroidal plasmas. Physics of Plasmas, 7(6), 2302-2305. doi:10.1063/1.874064 es_ES
dc.description.references Waltz, R. E., & Boozer, A. H. (1993). Local shear in general magnetic stellarator geometry. Physics of Fluids B: Plasma Physics, 5(7), 2201-2205. doi:10.1063/1.860754 es_ES
dc.description.references Pueschel, M. J., Faber, B. J., Citrin, J., Hegna, C. C., Terry, P. W., & Hatch, D. R. (2016). Stellarator Turbulence: Subdominant Eigenmodes and Quasilinear Modeling. Physical Review Letters, 116(8). doi:10.1103/physrevlett.116.085001 es_ES
dc.description.references Pearlstein, L. D., & Berk, H. L. (1969). Universal Eigenmode in a Strongly Sheared Magnetic Field. Physical Review Letters, 23(5), 220-222. doi:10.1103/physrevlett.23.220 es_ES
dc.description.references Meerbergen, K., & Sadkane, M. (1999). Using Krylov approximations to the matrix exponential operator in Davidson’s method. Applied Numerical Mathematics, 31(3), 331-351. doi:10.1016/s0168-9274(98)00134-2 es_ES
dc.description.references Chen, Y., Parker, S. E., Wan, W., & Bravenec, R. (2013). Benchmarking gyrokinetic simulations in a toroidal flux-tube. Physics of Plasmas, 20(9), 092511. doi:10.1063/1.4821982 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem