Mostrar el registro sencillo del ítem
dc.contributor.author | Castelblanque, L | es_ES |
dc.contributor.author | BALAGUER ZAMORA, BEGOÑA | es_ES |
dc.contributor.author | Marti, C. | es_ES |
dc.contributor.author | Orozco, M. | es_ES |
dc.contributor.author | Vera Vera, Pablo | es_ES |
dc.date.accessioned | 2020-06-05T03:33:18Z | |
dc.date.available | 2020-06-05T03:33:18Z | |
dc.date.issued | 2018-09 | es_ES |
dc.identifier.issn | 0028-646X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145423 | |
dc.description.abstract | [EN] Laticifers are specialized plant cells capable of indefinite elongation that ramify extensively and are responsible for latex biosynthesis and accumulation. However, the mechanisms underlying laticifer cell differentiation, growth and production of latex remain largely unknown. In a search for mutants showing enhanced accumulation of latex we identified two LOT OF LATEX (LOL) loci in Euphorbia lathyris. lol2 and lol5 mutants show enhanced production of latex contained within laticifer cells. The recessive lol2 mutant carries increased biosynthesis of the plant hormone jasmonoyl-isoleucine (JA-Ile) and therefore establishes a genetic link between jasmonic acid (JA) signaling and latex production in laticifers. Instead, heightened production of latex in lol5 plants obeys to enhanced proliferation of laticifer cells. Phylogenetic analysis of laticifer-expressed genes in E. lathyris and in two other latex-bearing species, Euphorbia corallioides and Euphorbia palustris, allowed the identification of canonical JA responsive elements present in the gene promoter regions of laticifer marker genes. Moreover, we identified that the hormone JA functions not as a morphogen for laticifer differentiation but as a trigger for the fill out of laticifers with latex and the associated triterpenoids. The identification of LOL loci represents a further step towards the understanding of mechanisms controlling latex production in laticifer cells. | es_ES |
dc.description.sponsorship | This work was supported by Spanish MINECO (BFU2015 -68199 -R to P.V.) and Generalitat Valenciana (Prometeo 2014/024 to P.V.). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | New Phytologist | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Euphorbia lathyris | es_ES |
dc.subject | Latex | es_ES |
dc.subject | Laticifer cells | es_ES |
dc.subject | Lol mutants | es_ES |
dc.subject | Triterpenoids | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/nph.15253 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-68199-R /ES/SOBRE LOS MECANISMOS DE SUSCEPTIBILIDAD A PATOGENOS EN ARABIDOPSIS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F024/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Castelblanque, L.; Balaguer Zamora, B.; Marti, C.; Orozco, M.; Vera Vera, P. (2018). LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris. New Phytologist. 219(4):1467-1479. https://doi.org/10.1111/nph.15253 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/nph.15253 | es_ES |
dc.description.upvformatpinicio | 1467 | es_ES |
dc.description.upvformatpfin | 1479 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 219 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.pmid | 29878406 | es_ES |
dc.relation.pasarela | S\371628 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Agrawal, A. A., & Konno, K. (2009). Latex: A Model for Understanding Mechanisms, Ecology, and Evolution of Plant Defense Against Herbivory. Annual Review of Ecology, Evolution, and Systematics, 40(1), 311-331. doi:10.1146/annurev.ecolsys.110308.120307 | es_ES |
dc.description.references | Barres, L., Vilatersana, R., Molero, J., Susanna, A., & Galbany-Casals, M. (2011). Molecular phylogeny of Euphorbia subg. Esula sect. Aphyllis (Euphorbiaceae) inferred from nrDNA and cpDNA markers with biogeographic insights. TAXON, 60(3), 705-720. doi:10.1002/tax.603007 | es_ES |
dc.description.references | Becerra, J. X., & Venable, D. L. (1990). Rapid-Terpene-Bath and «Squirt-Gun» Defense in Bursera schlechtendalii and the Counterploy of Chrysomelid Beetles. Biotropica, 22(3), 320. doi:10.2307/2388545 | es_ES |
dc.description.references | Boffelli, D. (2003). Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome. Science, 299(5611), 1391-1394. doi:10.1126/science.1081331 | es_ES |
dc.description.references | Bonaventure, G., Gfeller, A., Rodríguez, V. M., Armand, F., & Farmer, E. E. (2007). The fou2 Gain-of-Function Allele and the Wild-Type Allele of Two Pore Channel 1 Contribute to Different Extents or by Different Mechanisms to Defense Gene Expression in Arabidopsis. Plant and Cell Physiology, 48(12), 1775-1789. doi:10.1093/pcp/pcm151 | es_ES |
dc.description.references | Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J. M., Lorenzo, O., … Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448(7154), 666-671. doi:10.1038/nature06006 | es_ES |
dc.description.references | Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x | es_ES |
dc.description.references | Bary, A. de, Bower, F. O., & Scott, D. H. (1884). Comparative anatomy of the vegetative organs of the phanerogams and ferns; doi:10.5962/bhl.title.56013 | es_ES |
dc.description.references | De Geyter, N., Gholami, A., Goormachtig, S., & Goossens, A. (2012). Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends in Plant Science, 17(6), 349-359. doi:10.1016/j.tplants.2012.03.001 | es_ES |
dc.description.references | Dombrecht, B., Xue, G. P., Sprague, S. J., Kirkegaard, J. A., Ross, J. J., Reid, J. B., … Kazan, K. (2007). MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis. The Plant Cell, 19(7), 2225-2245. doi:10.1105/tpc.106.048017 | es_ES |
dc.description.references | Dussourd, D., & Eisner, T. (1987). Vein-cutting behavior: insect counterploy to the latex defense of plants. Science, 237(4817), 898-901. doi:10.1126/science.3616620 | es_ES |
dc.description.references | Ellis, C., Karafyllidis, I., Wasternack, C., & Turner, J. G. (2002). The Arabidopsis Mutant cev1 Links Cell Wall Signaling to Jasmonate and Ethylene Responses. The Plant Cell, 14(7), 1557-1566. doi:10.1105/tpc.002022 | es_ES |
dc.description.references | Frame, B. R., Shou, H., Chikwamba, R. K., Zhang, Z., Xiang, C., Fonger, T. M., … Wang, K. (2002). Agrobacterium tumefaciens-Mediated Transformation of Maize Embryos Using a Standard Binary Vector System. Plant Physiology, 129(1), 13-22. doi:10.1104/pp.000653 | es_ES |
dc.description.references | Godoy, M., Franco-Zorrilla, J. M., Pérez-Pérez, J., Oliveros, J. C., Lorenzo, Ó., & Solano, R. (2011). Improved protein-binding microarrays for the identification of DNA-binding specificities of transcription factors. The Plant Journal, 66(4), 700-711. doi:10.1111/j.1365-313x.2011.04519.x | es_ES |
dc.description.references | HAGEL, J., YEUNG, E., & FACCHINI, P. (2008). Got milk? The secret life of laticifers. Trends in Plant Science, 13(12), 631-639. doi:10.1016/j.tplants.2008.09.005 | es_ES |
dc.description.references | HAO, B. (2000). Laticifer Differentiation in Hevea brasiliensis: Induction by Exogenous Jasmonic Acid and Linolenic Acid. Annals of Botany, 85(1), 37-43. doi:10.1006/anbo.1999.0995 | es_ES |
dc.description.references | Huber, M., Epping, J., Schulze Gronover, C., Fricke, J., Aziz, Z., Brillatz, T., … Erb, M. (2016). A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack. PLOS Biology, 14(1), e1002332. doi:10.1371/journal.pbio.1002332 | es_ES |
dc.description.references | James, J., Tugizimana, F., Steenkamp, P., & Dubery, I. (2013). Metabolomic Analysis of Methyl Jasmonate-Induced Triterpenoid Production in the Medicinal Herb Centella asiatica (L.) Urban. Molecules, 18(4), 4267-4281. doi:10.3390/molecules18044267 | es_ES |
dc.description.references | Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.x | es_ES |
dc.description.references | Konno, K. (2011). Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained therein. Phytochemistry, 72(13), 1510-1530. doi:10.1016/j.phytochem.2011.02.016 | es_ES |
dc.description.references | Laosombut, T., Arreewichit, P., Nirapathpongporn, K., Traiperm, P., Kongsawadworakul, P., Viboonjun, U., & Narangajavana, J. (2016). Differential Expression of Methyl Jasmonate-Responsive Genes Correlates with Laticifer Vessel Proliferation in Phloem Tissue of Rubber Tree (Hevea brasiliensis). Journal of Plant Growth Regulation, 35(4), 1049-1063. doi:10.1007/s00344-016-9603-4 | es_ES |
dc.description.references | Lescot, M. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325-327. doi:10.1093/nar/30.1.325 | es_ES |
dc.description.references | Lewinsohn, T. M. (1991). The geographical distribution of plant latex. Chemoecology, 2(1), 64-68. doi:10.1007/bf01240668 | es_ES |
dc.description.references | Lorenzo, O., Chico, J. M., Sánchez-Serrano, J. J., & Solano, R. (2004). JASMONATE-INSENSITIVE1 Encodes a MYC Transcription Factor Essential to Discriminate between Different Jasmonate-Regulated Defense Responses in Arabidopsis. The Plant Cell, 16(7), 1938-1950. doi:10.1105/tpc.022319 | es_ES |
dc.description.references | Mahlberg, P. G. (1961). EMBRYOGENY AND HISTOGENESIS IN NERIUM OLEANDER II. ORIGIN AND DEVELOPMENT OF THE NON-ARTICULATED LATICIFER. American Journal of Botany, 48(1), 90-99. doi:10.1002/j.1537-2197.1961.tb11608.x | es_ES |
dc.description.references | Mahlberg, P. G. (1963). Development of Non-Articulated Laticifer in Seedling Axis of Nerium oleander. Botanical Gazette, 124(3), 224-231. doi:10.1086/336195 | es_ES |
dc.description.references | Mahlberg, P. G. (1993). Laticifers: An historical perspective. The Botanical Review, 59(1), 1-23. doi:10.1007/bf02856611 | es_ES |
dc.description.references | Mahlberg, P. G., & Sabharwal, P. S. (1968). ORIGIN AND EARLY DEVELOPMENT OF NONARTICULATED LATICIFERS IN EMBRYOS OF EUPHORBIA MARGINATA. American Journal of Botany, 55(3), 375-381. doi:10.1002/j.1537-2197.1968.tb07389.x | es_ES |
dc.description.references | Mangas, S., Bonfill, M., Osuna, L., Moyano, E., Tortoriello, J., Cusido, R. M., … Palazón, J. (2006). The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochemistry, 67(18), 2041-2049. doi:10.1016/j.phytochem.2006.06.025 | es_ES |
dc.description.references | Memelink, J., Verpoorte, R., & Kijne, J. W. (2001). ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends in Plant Science, 6(5), 212-219. doi:10.1016/s1360-1385(01)01924-0 | es_ES |
dc.description.references | Mertens, J., Pollier, J., Vanden Bossche, R., Lopez-Vidriero, I., Franco-Zorrilla, J. M., & Goossens, A. (2015). The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula. Plant Physiology, 170(1), 194-210. doi:10.1104/pp.15.01645 | es_ES |
dc.description.references | Mertens, J., Van Moerkercke, A., Vanden Bossche, R., Pollier, J., & Goossens, A. (2016). Clade IVa Basic Helix–Loop–Helix Transcription Factors Form Part of a Conserved Jasmonate Signaling Circuit for the Regulation of Bioactive Plant Terpenoid Biosynthesis. Plant and Cell Physiology, 57(12), 2564-2575. doi:10.1093/pcp/pcw168 | es_ES |
dc.description.references | Metcalfe, C. R. (1967). Distribution of latex in the plant kingdom. Economic Botany, 21(2), 115-127. doi:10.1007/bf02897859 | es_ES |
dc.description.references | Nessler, C. L., & Mahlberg, P. G. (1981). CYTOCHEMICAL LOCALIZATION OF CELLULASE ACTIVITY IN ARTICULATED, ANASTOMOSING LATICIFERS OF PAPAVER SOMNIFERUM L. (PAPAVERACEAE). American Journal of Botany, 68(5), 730-732. doi:10.1002/j.1537-2197.1981.tb12405.x | es_ES |
dc.description.references | Pauwels, L., Inzé, D., & Goossens, A. (2009). Jasmonate-inducible gene: what does it mean? Trends in Plant Science, 14(2), 87-91. doi:10.1016/j.tplants.2008.11.005 | es_ES |
dc.description.references | Pickard, W. F. (2008). Laticifers and secretory ducts: two other tube systems in plants. New Phytologist, 177(4), 877-888. doi:10.1111/j.1469-8137.2007.02323.x | es_ES |
dc.description.references | Pirrello, J., Leclercq, J., Dessailly, F., Rio, M., Piyatrakul, P., Kuswanhadi, K., … Montoro, P. (2014). Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0341-0 | es_ES |
dc.description.references | Ramírez, V., Van der Ent, S., García-Andrade, J., Coego, A., Pieterse, C. M., & Vera, P. (2010). OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in Arabidopsis. BMC Plant Biology, 10(1), 199. doi:10.1186/1471-2229-10-199 | es_ES |
dc.description.references | Rouster, J., Leah, R., Mundy, J., & Cameron-Mills, V. (1997). Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. The Plant Journal, 11(3), 513-523. doi:10.1046/j.1365-313x.1997.11030513.x | es_ES |
dc.description.references | Sánchez-Bel, P., Sanmartín, N., Pastor, V., Mateu, D., Cerezo, M., Vidal-Albalat, A., … Flors, V. (2017). Mycorrhizal tomato plants fine tunes the growth-defence balance upon N depleted root environments. Plant, Cell & Environment, 41(2), 406-420. doi:10.1111/pce.13105 | es_ES |
dc.description.references | Staswick, P. E., Su, W., & Howell, S. H. (1992). Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proceedings of the National Academy of Sciences, 89(15), 6837-6840. doi:10.1073/pnas.89.15.6837 | es_ES |
dc.description.references | Suzuki, H., Reddy, M. S. S., Naoumkina, M., Aziz, N., May, G. D., Huhman, D. V., … Dixon, R. A. (2004). Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta, 220(5), 696-707. doi:10.1007/s00425-004-1387-2 | es_ES |
dc.description.references | Tamari, G., Borochov, A., Atzorn, R., & Weiss, D. (1995). Methyl jasmonate induces pigmentation and flavonoid gene expression in petunia corollas: A possible role in wound response. Physiologia Plantarum, 94(1), 45-50. doi:10.1111/j.1399-3054.1995.tb00782.x | es_ES |