- -

LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castelblanque, L es_ES
dc.contributor.author BALAGUER ZAMORA, BEGOÑA es_ES
dc.contributor.author Marti, C. es_ES
dc.contributor.author Orozco, M. es_ES
dc.contributor.author Vera Vera, Pablo es_ES
dc.date.accessioned 2020-06-05T03:33:18Z
dc.date.available 2020-06-05T03:33:18Z
dc.date.issued 2018-09 es_ES
dc.identifier.issn 0028-646X es_ES
dc.identifier.uri http://hdl.handle.net/10251/145423
dc.description.abstract [EN] Laticifers are specialized plant cells capable of indefinite elongation that ramify extensively and are responsible for latex biosynthesis and accumulation. However, the mechanisms underlying laticifer cell differentiation, growth and production of latex remain largely unknown. In a search for mutants showing enhanced accumulation of latex we identified two LOT OF LATEX (LOL) loci in Euphorbia lathyris. lol2 and lol5 mutants show enhanced production of latex contained within laticifer cells. The recessive lol2 mutant carries increased biosynthesis of the plant hormone jasmonoyl-isoleucine (JA-Ile) and therefore establishes a genetic link between jasmonic acid (JA) signaling and latex production in laticifers. Instead, heightened production of latex in lol5 plants obeys to enhanced proliferation of laticifer cells. Phylogenetic analysis of laticifer-expressed genes in E. lathyris and in two other latex-bearing species, Euphorbia corallioides and Euphorbia palustris, allowed the identification of canonical JA responsive elements present in the gene promoter regions of laticifer marker genes. Moreover, we identified that the hormone JA functions not as a morphogen for laticifer differentiation but as a trigger for the fill out of laticifers with latex and the associated triterpenoids. The identification of LOL loci represents a further step towards the understanding of mechanisms controlling latex production in laticifer cells. es_ES
dc.description.sponsorship This work was supported by Spanish MINECO (BFU2015 -68199 -R to P.V.) and Generalitat Valenciana (Prometeo 2014/024 to P.V.). es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof New Phytologist es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Euphorbia lathyris es_ES
dc.subject Latex es_ES
dc.subject Laticifer cells es_ES
dc.subject Lol mutants es_ES
dc.subject Triterpenoids es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/nph.15253 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-68199-R /ES/SOBRE LOS MECANISMOS DE SUSCEPTIBILIDAD A PATOGENOS EN ARABIDOPSIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F024/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Castelblanque, L.; Balaguer Zamora, B.; Marti, C.; Orozco, M.; Vera Vera, P. (2018). LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris. New Phytologist. 219(4):1467-1479. https://doi.org/10.1111/nph.15253 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/nph.15253 es_ES
dc.description.upvformatpinicio 1467 es_ES
dc.description.upvformatpfin 1479 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 219 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 29878406 es_ES
dc.relation.pasarela S\371628 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Agrawal, A. A., & Konno, K. (2009). Latex: A Model for Understanding Mechanisms, Ecology, and Evolution of Plant Defense Against Herbivory. Annual Review of Ecology, Evolution, and Systematics, 40(1), 311-331. doi:10.1146/annurev.ecolsys.110308.120307 es_ES
dc.description.references Barres, L., Vilatersana, R., Molero, J., Susanna, A., & Galbany-Casals, M. (2011). Molecular phylogeny of Euphorbia subg. Esula sect. Aphyllis (Euphorbiaceae) inferred from nrDNA and cpDNA markers with biogeographic insights. TAXON, 60(3), 705-720. doi:10.1002/tax.603007 es_ES
dc.description.references Becerra, J. X., & Venable, D. L. (1990). Rapid-Terpene-Bath and «Squirt-Gun» Defense in Bursera schlechtendalii and the Counterploy of Chrysomelid Beetles. Biotropica, 22(3), 320. doi:10.2307/2388545 es_ES
dc.description.references Boffelli, D. (2003). Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome. Science, 299(5611), 1391-1394. doi:10.1126/science.1081331 es_ES
dc.description.references Bonaventure, G., Gfeller, A., Rodríguez, V. M., Armand, F., & Farmer, E. E. (2007). The fou2 Gain-of-Function Allele and the Wild-Type Allele of Two Pore Channel 1 Contribute to Different Extents or by Different Mechanisms to Defense Gene Expression in Arabidopsis. Plant and Cell Physiology, 48(12), 1775-1789. doi:10.1093/pcp/pcm151 es_ES
dc.description.references Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J. M., Lorenzo, O., … Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448(7154), 666-671. doi:10.1038/nature06006 es_ES
dc.description.references Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x es_ES
dc.description.references Bary, A. de, Bower, F. O., & Scott, D. H. (1884). Comparative anatomy of the vegetative organs of the phanerogams and ferns; doi:10.5962/bhl.title.56013 es_ES
dc.description.references De Geyter, N., Gholami, A., Goormachtig, S., & Goossens, A. (2012). Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends in Plant Science, 17(6), 349-359. doi:10.1016/j.tplants.2012.03.001 es_ES
dc.description.references Dombrecht, B., Xue, G. P., Sprague, S. J., Kirkegaard, J. A., Ross, J. J., Reid, J. B., … Kazan, K. (2007). MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis. The Plant Cell, 19(7), 2225-2245. doi:10.1105/tpc.106.048017 es_ES
dc.description.references Dussourd, D., & Eisner, T. (1987). Vein-cutting behavior: insect counterploy to the latex defense of plants. Science, 237(4817), 898-901. doi:10.1126/science.3616620 es_ES
dc.description.references Ellis, C., Karafyllidis, I., Wasternack, C., & Turner, J. G. (2002). The Arabidopsis Mutant cev1 Links Cell Wall Signaling to Jasmonate and Ethylene Responses. The Plant Cell, 14(7), 1557-1566. doi:10.1105/tpc.002022 es_ES
dc.description.references Frame, B. R., Shou, H., Chikwamba, R. K., Zhang, Z., Xiang, C., Fonger, T. M., … Wang, K. (2002). Agrobacterium tumefaciens-Mediated Transformation of Maize Embryos Using a Standard Binary Vector System. Plant Physiology, 129(1), 13-22. doi:10.1104/pp.000653 es_ES
dc.description.references Godoy, M., Franco-Zorrilla, J. M., Pérez-Pérez, J., Oliveros, J. C., Lorenzo, Ó., & Solano, R. (2011). Improved protein-binding microarrays for the identification of DNA-binding specificities of transcription factors. The Plant Journal, 66(4), 700-711. doi:10.1111/j.1365-313x.2011.04519.x es_ES
dc.description.references HAGEL, J., YEUNG, E., & FACCHINI, P. (2008). Got milk? The secret life of laticifers. Trends in Plant Science, 13(12), 631-639. doi:10.1016/j.tplants.2008.09.005 es_ES
dc.description.references HAO, B. (2000). Laticifer Differentiation in Hevea brasiliensis: Induction by Exogenous Jasmonic Acid and Linolenic Acid. Annals of Botany, 85(1), 37-43. doi:10.1006/anbo.1999.0995 es_ES
dc.description.references Huber, M., Epping, J., Schulze Gronover, C., Fricke, J., Aziz, Z., Brillatz, T., … Erb, M. (2016). A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack. PLOS Biology, 14(1), e1002332. doi:10.1371/journal.pbio.1002332 es_ES
dc.description.references James, J., Tugizimana, F., Steenkamp, P., & Dubery, I. (2013). Metabolomic Analysis of Methyl Jasmonate-Induced Triterpenoid Production in the Medicinal Herb Centella asiatica (L.) Urban. Molecules, 18(4), 4267-4281. doi:10.3390/molecules18044267 es_ES
dc.description.references Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.x es_ES
dc.description.references Konno, K. (2011). Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained therein. Phytochemistry, 72(13), 1510-1530. doi:10.1016/j.phytochem.2011.02.016 es_ES
dc.description.references Laosombut, T., Arreewichit, P., Nirapathpongporn, K., Traiperm, P., Kongsawadworakul, P., Viboonjun, U., & Narangajavana, J. (2016). Differential Expression of Methyl Jasmonate-Responsive Genes Correlates with Laticifer Vessel Proliferation in Phloem Tissue of Rubber Tree (Hevea brasiliensis). Journal of Plant Growth Regulation, 35(4), 1049-1063. doi:10.1007/s00344-016-9603-4 es_ES
dc.description.references Lescot, M. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325-327. doi:10.1093/nar/30.1.325 es_ES
dc.description.references Lewinsohn, T. M. (1991). The geographical distribution of plant latex. Chemoecology, 2(1), 64-68. doi:10.1007/bf01240668 es_ES
dc.description.references Lorenzo, O., Chico, J. M., Sánchez-Serrano, J. J., & Solano, R. (2004). JASMONATE-INSENSITIVE1 Encodes a MYC Transcription Factor Essential to Discriminate between Different Jasmonate-Regulated Defense Responses in Arabidopsis. The Plant Cell, 16(7), 1938-1950. doi:10.1105/tpc.022319 es_ES
dc.description.references Mahlberg, P. G. (1961). EMBRYOGENY AND HISTOGENESIS IN NERIUM OLEANDER II. ORIGIN AND DEVELOPMENT OF THE NON-ARTICULATED LATICIFER. American Journal of Botany, 48(1), 90-99. doi:10.1002/j.1537-2197.1961.tb11608.x es_ES
dc.description.references Mahlberg, P. G. (1963). Development of Non-Articulated Laticifer in Seedling Axis of Nerium oleander. Botanical Gazette, 124(3), 224-231. doi:10.1086/336195 es_ES
dc.description.references Mahlberg, P. G. (1993). Laticifers: An historical perspective. The Botanical Review, 59(1), 1-23. doi:10.1007/bf02856611 es_ES
dc.description.references Mahlberg, P. G., & Sabharwal, P. S. (1968). ORIGIN AND EARLY DEVELOPMENT OF NONARTICULATED LATICIFERS IN EMBRYOS OF EUPHORBIA MARGINATA. American Journal of Botany, 55(3), 375-381. doi:10.1002/j.1537-2197.1968.tb07389.x es_ES
dc.description.references Mangas, S., Bonfill, M., Osuna, L., Moyano, E., Tortoriello, J., Cusido, R. M., … Palazón, J. (2006). The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochemistry, 67(18), 2041-2049. doi:10.1016/j.phytochem.2006.06.025 es_ES
dc.description.references Memelink, J., Verpoorte, R., & Kijne, J. W. (2001). ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends in Plant Science, 6(5), 212-219. doi:10.1016/s1360-1385(01)01924-0 es_ES
dc.description.references Mertens, J., Pollier, J., Vanden Bossche, R., Lopez-Vidriero, I., Franco-Zorrilla, J. M., & Goossens, A. (2015). The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula. Plant Physiology, 170(1), 194-210. doi:10.1104/pp.15.01645 es_ES
dc.description.references Mertens, J., Van Moerkercke, A., Vanden Bossche, R., Pollier, J., & Goossens, A. (2016). Clade IVa Basic Helix–Loop–Helix Transcription Factors Form Part of a Conserved Jasmonate Signaling Circuit for the Regulation of Bioactive Plant Terpenoid Biosynthesis. Plant and Cell Physiology, 57(12), 2564-2575. doi:10.1093/pcp/pcw168 es_ES
dc.description.references Metcalfe, C. R. (1967). Distribution of latex in the plant kingdom. Economic Botany, 21(2), 115-127. doi:10.1007/bf02897859 es_ES
dc.description.references Nessler, C. L., & Mahlberg, P. G. (1981). CYTOCHEMICAL LOCALIZATION OF CELLULASE ACTIVITY IN ARTICULATED, ANASTOMOSING LATICIFERS OF PAPAVER SOMNIFERUM L. (PAPAVERACEAE). American Journal of Botany, 68(5), 730-732. doi:10.1002/j.1537-2197.1981.tb12405.x es_ES
dc.description.references Pauwels, L., Inzé, D., & Goossens, A. (2009). Jasmonate-inducible gene: what does it mean? Trends in Plant Science, 14(2), 87-91. doi:10.1016/j.tplants.2008.11.005 es_ES
dc.description.references Pickard, W. F. (2008). Laticifers and secretory ducts: two other tube systems in plants. New Phytologist, 177(4), 877-888. doi:10.1111/j.1469-8137.2007.02323.x es_ES
dc.description.references Pirrello, J., Leclercq, J., Dessailly, F., Rio, M., Piyatrakul, P., Kuswanhadi, K., … Montoro, P. (2014). Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0341-0 es_ES
dc.description.references Ramírez, V., Van der Ent, S., García-Andrade, J., Coego, A., Pieterse, C. M., & Vera, P. (2010). OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in Arabidopsis. BMC Plant Biology, 10(1), 199. doi:10.1186/1471-2229-10-199 es_ES
dc.description.references Rouster, J., Leah, R., Mundy, J., & Cameron-Mills, V. (1997). Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. The Plant Journal, 11(3), 513-523. doi:10.1046/j.1365-313x.1997.11030513.x es_ES
dc.description.references Sánchez-Bel, P., Sanmartín, N., Pastor, V., Mateu, D., Cerezo, M., Vidal-Albalat, A., … Flors, V. (2017). Mycorrhizal tomato plants fine tunes the growth-defence balance upon N depleted root environments. Plant, Cell & Environment, 41(2), 406-420. doi:10.1111/pce.13105 es_ES
dc.description.references Staswick, P. E., Su, W., & Howell, S. H. (1992). Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proceedings of the National Academy of Sciences, 89(15), 6837-6840. doi:10.1073/pnas.89.15.6837 es_ES
dc.description.references Suzuki, H., Reddy, M. S. S., Naoumkina, M., Aziz, N., May, G. D., Huhman, D. V., … Dixon, R. A. (2004). Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta, 220(5), 696-707. doi:10.1007/s00425-004-1387-2 es_ES
dc.description.references Tamari, G., Borochov, A., Atzorn, R., & Weiss, D. (1995). Methyl jasmonate induces pigmentation and flavonoid gene expression in petunia corollas: A possible role in wound response. Physiologia Plantarum, 94(1), 45-50. doi:10.1111/j.1399-3054.1995.tb00782.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem