- -

LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris

Mostrar el registro completo del ítem

Castelblanque, L.; Balaguer Zamora, B.; Marti, C.; Orozco, M.; Vera Vera, P. (2018). LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris. New Phytologist. 219(4):1467-1479. https://doi.org/10.1111/nph.15253

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145423

Ficheros en el ítem

Metadatos del ítem

Título: LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris
Autor: Castelblanque, L BALAGUER ZAMORA, BEGOÑA Marti, C. Orozco, M. Vera Vera, Pablo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Laticifers are specialized plant cells capable of indefinite elongation that ramify extensively and are responsible for latex biosynthesis and accumulation. However, the mechanisms underlying laticifer cell differentiation, ...[+]
Palabras clave: Euphorbia lathyris , Latex , Laticifer cells , Lol mutants , Triterpenoids
Derechos de uso: Reserva de todos los derechos
Fuente:
New Phytologist. (issn: 0028-646X )
DOI: 10.1111/nph.15253
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/nph.15253
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BFU2015-68199-R /ES/SOBRE LOS MECANISMOS DE SUSCEPTIBILIDAD A PATOGENOS EN ARABIDOPSIS/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F024/
Agradecimientos:
This work was supported by Spanish MINECO (BFU2015 -68199 -R to P.V.) and Generalitat Valenciana (Prometeo 2014/024 to P.V.).
Tipo: Artículo

References

Agrawal, A. A., & Konno, K. (2009). Latex: A Model for Understanding Mechanisms, Ecology, and Evolution of Plant Defense Against Herbivory. Annual Review of Ecology, Evolution, and Systematics, 40(1), 311-331. doi:10.1146/annurev.ecolsys.110308.120307

Barres, L., Vilatersana, R., Molero, J., Susanna, A., & Galbany-Casals, M. (2011). Molecular phylogeny of Euphorbia subg. Esula sect. Aphyllis (Euphorbiaceae) inferred from nrDNA and cpDNA markers with biogeographic insights. TAXON, 60(3), 705-720. doi:10.1002/tax.603007

Becerra, J. X., & Venable, D. L. (1990). Rapid-Terpene-Bath and «Squirt-Gun» Defense in Bursera schlechtendalii and the Counterploy of Chrysomelid Beetles. Biotropica, 22(3), 320. doi:10.2307/2388545 [+]
Agrawal, A. A., & Konno, K. (2009). Latex: A Model for Understanding Mechanisms, Ecology, and Evolution of Plant Defense Against Herbivory. Annual Review of Ecology, Evolution, and Systematics, 40(1), 311-331. doi:10.1146/annurev.ecolsys.110308.120307

Barres, L., Vilatersana, R., Molero, J., Susanna, A., & Galbany-Casals, M. (2011). Molecular phylogeny of Euphorbia subg. Esula sect. Aphyllis (Euphorbiaceae) inferred from nrDNA and cpDNA markers with biogeographic insights. TAXON, 60(3), 705-720. doi:10.1002/tax.603007

Becerra, J. X., & Venable, D. L. (1990). Rapid-Terpene-Bath and «Squirt-Gun» Defense in Bursera schlechtendalii and the Counterploy of Chrysomelid Beetles. Biotropica, 22(3), 320. doi:10.2307/2388545

Boffelli, D. (2003). Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome. Science, 299(5611), 1391-1394. doi:10.1126/science.1081331

Bonaventure, G., Gfeller, A., Rodríguez, V. M., Armand, F., & Farmer, E. E. (2007). The fou2 Gain-of-Function Allele and the Wild-Type Allele of Two Pore Channel 1 Contribute to Different Extents or by Different Mechanisms to Defense Gene Expression in Arabidopsis. Plant and Cell Physiology, 48(12), 1775-1789. doi:10.1093/pcp/pcm151

Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J. M., Lorenzo, O., … Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448(7154), 666-671. doi:10.1038/nature06006

Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x

Bary, A. de, Bower, F. O., & Scott, D. H. (1884). Comparative anatomy of the vegetative organs of the phanerogams and ferns; doi:10.5962/bhl.title.56013

De Geyter, N., Gholami, A., Goormachtig, S., & Goossens, A. (2012). Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends in Plant Science, 17(6), 349-359. doi:10.1016/j.tplants.2012.03.001

Dombrecht, B., Xue, G. P., Sprague, S. J., Kirkegaard, J. A., Ross, J. J., Reid, J. B., … Kazan, K. (2007). MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis. The Plant Cell, 19(7), 2225-2245. doi:10.1105/tpc.106.048017

Dussourd, D., & Eisner, T. (1987). Vein-cutting behavior: insect counterploy to the latex defense of plants. Science, 237(4817), 898-901. doi:10.1126/science.3616620

Ellis, C., Karafyllidis, I., Wasternack, C., & Turner, J. G. (2002). The Arabidopsis Mutant cev1 Links Cell Wall Signaling to Jasmonate and Ethylene Responses. The Plant Cell, 14(7), 1557-1566. doi:10.1105/tpc.002022

Frame, B. R., Shou, H., Chikwamba, R. K., Zhang, Z., Xiang, C., Fonger, T. M., … Wang, K. (2002). Agrobacterium tumefaciens-Mediated Transformation of Maize Embryos Using a Standard Binary Vector System. Plant Physiology, 129(1), 13-22. doi:10.1104/pp.000653

Godoy, M., Franco-Zorrilla, J. M., Pérez-Pérez, J., Oliveros, J. C., Lorenzo, Ó., & Solano, R. (2011). Improved protein-binding microarrays for the identification of DNA-binding specificities of transcription factors. The Plant Journal, 66(4), 700-711. doi:10.1111/j.1365-313x.2011.04519.x

HAGEL, J., YEUNG, E., & FACCHINI, P. (2008). Got milk? The secret life of laticifers. Trends in Plant Science, 13(12), 631-639. doi:10.1016/j.tplants.2008.09.005

HAO, B. (2000). Laticifer Differentiation in Hevea brasiliensis: Induction by Exogenous Jasmonic Acid and Linolenic Acid. Annals of Botany, 85(1), 37-43. doi:10.1006/anbo.1999.0995

Huber, M., Epping, J., Schulze Gronover, C., Fricke, J., Aziz, Z., Brillatz, T., … Erb, M. (2016). A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack. PLOS Biology, 14(1), e1002332. doi:10.1371/journal.pbio.1002332

James, J., Tugizimana, F., Steenkamp, P., & Dubery, I. (2013). Metabolomic Analysis of Methyl Jasmonate-Induced Triterpenoid Production in the Medicinal Herb Centella asiatica (L.) Urban. Molecules, 18(4), 4267-4281. doi:10.3390/molecules18044267

Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.x

Konno, K. (2011). Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained therein. Phytochemistry, 72(13), 1510-1530. doi:10.1016/j.phytochem.2011.02.016

Laosombut, T., Arreewichit, P., Nirapathpongporn, K., Traiperm, P., Kongsawadworakul, P., Viboonjun, U., & Narangajavana, J. (2016). Differential Expression of Methyl Jasmonate-Responsive Genes Correlates with Laticifer Vessel Proliferation in Phloem Tissue of Rubber Tree (Hevea brasiliensis). Journal of Plant Growth Regulation, 35(4), 1049-1063. doi:10.1007/s00344-016-9603-4

Lescot, M. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325-327. doi:10.1093/nar/30.1.325

Lewinsohn, T. M. (1991). The geographical distribution of plant latex. Chemoecology, 2(1), 64-68. doi:10.1007/bf01240668

Lorenzo, O., Chico, J. M., Sánchez-Serrano, J. J., & Solano, R. (2004). JASMONATE-INSENSITIVE1 Encodes a MYC Transcription Factor Essential to Discriminate between Different Jasmonate-Regulated Defense Responses in Arabidopsis. The Plant Cell, 16(7), 1938-1950. doi:10.1105/tpc.022319

Mahlberg, P. G. (1961). EMBRYOGENY AND HISTOGENESIS IN NERIUM OLEANDER II. ORIGIN AND DEVELOPMENT OF THE NON-ARTICULATED LATICIFER. American Journal of Botany, 48(1), 90-99. doi:10.1002/j.1537-2197.1961.tb11608.x

Mahlberg, P. G. (1963). Development of Non-Articulated Laticifer in Seedling Axis of Nerium oleander. Botanical Gazette, 124(3), 224-231. doi:10.1086/336195

Mahlberg, P. G. (1993). Laticifers: An historical perspective. The Botanical Review, 59(1), 1-23. doi:10.1007/bf02856611

Mahlberg, P. G., & Sabharwal, P. S. (1968). ORIGIN AND EARLY DEVELOPMENT OF NONARTICULATED LATICIFERS IN EMBRYOS OF EUPHORBIA MARGINATA. American Journal of Botany, 55(3), 375-381. doi:10.1002/j.1537-2197.1968.tb07389.x

Mangas, S., Bonfill, M., Osuna, L., Moyano, E., Tortoriello, J., Cusido, R. M., … Palazón, J. (2006). The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochemistry, 67(18), 2041-2049. doi:10.1016/j.phytochem.2006.06.025

Memelink, J., Verpoorte, R., & Kijne, J. W. (2001). ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends in Plant Science, 6(5), 212-219. doi:10.1016/s1360-1385(01)01924-0

Mertens, J., Pollier, J., Vanden Bossche, R., Lopez-Vidriero, I., Franco-Zorrilla, J. M., & Goossens, A. (2015). The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula. Plant Physiology, 170(1), 194-210. doi:10.1104/pp.15.01645

Mertens, J., Van Moerkercke, A., Vanden Bossche, R., Pollier, J., & Goossens, A. (2016). Clade IVa Basic Helix–Loop–Helix Transcription Factors Form Part of a Conserved Jasmonate Signaling Circuit for the Regulation of Bioactive Plant Terpenoid Biosynthesis. Plant and Cell Physiology, 57(12), 2564-2575. doi:10.1093/pcp/pcw168

Metcalfe, C. R. (1967). Distribution of latex in the plant kingdom. Economic Botany, 21(2), 115-127. doi:10.1007/bf02897859

Nessler, C. L., & Mahlberg, P. G. (1981). CYTOCHEMICAL LOCALIZATION OF CELLULASE ACTIVITY IN ARTICULATED, ANASTOMOSING LATICIFERS OF PAPAVER SOMNIFERUM L. (PAPAVERACEAE). American Journal of Botany, 68(5), 730-732. doi:10.1002/j.1537-2197.1981.tb12405.x

Pauwels, L., Inzé, D., & Goossens, A. (2009). Jasmonate-inducible gene: what does it mean? Trends in Plant Science, 14(2), 87-91. doi:10.1016/j.tplants.2008.11.005

Pickard, W. F. (2008). Laticifers and secretory ducts: two other tube systems in plants. New Phytologist, 177(4), 877-888. doi:10.1111/j.1469-8137.2007.02323.x

Pirrello, J., Leclercq, J., Dessailly, F., Rio, M., Piyatrakul, P., Kuswanhadi, K., … Montoro, P. (2014). Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0341-0

Ramírez, V., Van der Ent, S., García-Andrade, J., Coego, A., Pieterse, C. M., & Vera, P. (2010). OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in Arabidopsis. BMC Plant Biology, 10(1), 199. doi:10.1186/1471-2229-10-199

Rouster, J., Leah, R., Mundy, J., & Cameron-Mills, V. (1997). Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. The Plant Journal, 11(3), 513-523. doi:10.1046/j.1365-313x.1997.11030513.x

Sánchez-Bel, P., Sanmartín, N., Pastor, V., Mateu, D., Cerezo, M., Vidal-Albalat, A., … Flors, V. (2017). Mycorrhizal tomato plants fine tunes the growth-defence balance upon N depleted root environments. Plant, Cell & Environment, 41(2), 406-420. doi:10.1111/pce.13105

Staswick, P. E., Su, W., & Howell, S. H. (1992). Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proceedings of the National Academy of Sciences, 89(15), 6837-6840. doi:10.1073/pnas.89.15.6837

Suzuki, H., Reddy, M. S. S., Naoumkina, M., Aziz, N., May, G. D., Huhman, D. V., … Dixon, R. A. (2004). Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta, 220(5), 696-707. doi:10.1007/s00425-004-1387-2

Tamari, G., Borochov, A., Atzorn, R., & Weiss, D. (1995). Methyl jasmonate induces pigmentation and flavonoid gene expression in petunia corollas: A possible role in wound response. Physiologia Plantarum, 94(1), 45-50. doi:10.1111/j.1399-3054.1995.tb00782.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem