- -

Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers

Mostrar el registro completo del ítem

Rubino, C.; Bonet-Aracil, M.; Gisbert Paya, J.; Liuzzi, S.; Stefanizzi, P.; Zamorano Cantó, M.; Martellotta, F. (2019). Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers. Materials. 12(23):1-18. https://doi.org/10.3390/ma12234020

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145551

Ficheros en el ítem

Metadatos del ítem

Título: Composite Eco-Friendly Sound Absorbing Materials Made of Recycled Textile Waste and Biopolymers
Autor: Rubino, C. BONET-ARACIL, MARILÉS Gisbert Paya, Jaime Liuzzi, Stefania Stefanizzi, Pietro Zamorano Cantó, Manuel Martellotta, Francesco
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera
Fecha difusión:
Resumen:
[EN] In recent years, the interest in reusing recycled fibers as building materials has been growing as a consequence of their ability to reduce the production of waste and the use of virgin resources, taking advantage of ...[+]
Palabras clave: Textile waste , Biopolymers , Sound absorption , Sustainable materials , Circular economy
Derechos de uso: Reconocimiento (by)
Fuente:
Materials. (eissn: 1996-1944 )
DOI: 10.3390/ma12234020
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ma12234020
Código del Proyecto:
info:eu-repo/grantAgreement/MIUR//DOT1748713 N.5/
Agradecimientos:
C.R. scholarship has been funded by the Italian Ministry of Education, University and Research (MIUR), within the National Research Program "PON Ricerca e Innovazione 2014-2020" (grant DOT1748713 N.5).
Tipo: Artículo

References

Joshi, S. ., Drzal, L. ., Mohanty, A. ., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371-376. doi:10.1016/j.compositesa.2003.09.016

Hesterberg, T. W., & Hart, G. A. (2001). Synthetic Vitreous Fibers: A Review of Toxicology Research and Its Impact on Hazard Classification. Critical Reviews in Toxicology, 31(1), 1-53. doi:10.1080/20014091111668

Bakatovich, A., Davydenko, N., & Gaspar, F. (2018). Thermal insulating plates produced on the basis of vegetable agricultural waste. Energy and Buildings, 180, 72-82. doi:10.1016/j.enbuild.2018.09.032 [+]
Joshi, S. ., Drzal, L. ., Mohanty, A. ., & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371-376. doi:10.1016/j.compositesa.2003.09.016

Hesterberg, T. W., & Hart, G. A. (2001). Synthetic Vitreous Fibers: A Review of Toxicology Research and Its Impact on Hazard Classification. Critical Reviews in Toxicology, 31(1), 1-53. doi:10.1080/20014091111668

Bakatovich, A., Davydenko, N., & Gaspar, F. (2018). Thermal insulating plates produced on the basis of vegetable agricultural waste. Energy and Buildings, 180, 72-82. doi:10.1016/j.enbuild.2018.09.032

Martellotta, F., Cannavale, A., De Matteis, V., & Ayr, U. (2018). Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Applied Acoustics, 141, 71-78. doi:10.1016/j.apacoust.2018.06.022

Kymäläinen, H.-R., & Sjöberg, A.-M. (2008). Flax and hemp fibres as raw materials for thermal insulations. Building and Environment, 43(7), 1261-1269. doi:10.1016/j.buildenv.2007.03.006

Zhou, X., Zheng, F., Li, H., & Lu, C. (2010). An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings, 42(7), 1070-1074. doi:10.1016/j.enbuild.2010.01.020

Ashour, T., Georg, H., & Wu, W. (2011). Performance of straw bale wall: A case of study. Energy and Buildings, 43(8), 1960-1967. doi:10.1016/j.enbuild.2011.04.001

Lim, Z. Y., Putra, A., Nor, M. J. M., & Yaakob, M. Y. (2018). Sound absorption performance of natural kenaf fibres. Applied Acoustics, 130, 107-114. doi:10.1016/j.apacoust.2017.09.012

Hosseini Fouladi, M., Ayub, M., & Jailani Mohd Nor, M. (2011). Analysis of coir fiber acoustical characteristics. Applied Acoustics, 72(1), 35-42. doi:10.1016/j.apacoust.2010.09.007

Wei, K., Lv, C., Chen, M., Zhou, X., Dai, Z., & Shen, D. (2015). Development and performance evaluation of a new thermal insulation material from rice straw using high frequency hot-pressing. Energy and Buildings, 87, 116-122. doi:10.1016/j.enbuild.2014.11.026

Berardi, U., & Iannace, G. (2015). Acoustic characterization of natural fibers for sound absorption applications. Building and Environment, 94, 840-852. doi:10.1016/j.buildenv.2015.05.029

Rubino, C., Liuzzi, S., Martellotta, F., & Stefanizzi, P. (2018). Textile wastes in building sector: A review. Modelling, Measurement and Control B, 87(3), 172-179. doi:10.18280/mmc_b.870309

Ricciardi, P., Belloni, E., & Cotana, F. (2014). Innovative panels with recycled materials: Thermal and acoustic performance and Life Cycle Assessment. Applied Energy, 134, 150-162. doi:10.1016/j.apenergy.2014.07.112

Barbero-Barrera, M. del M., Pombo, O., & Navacerrada, M. de los Á. (2016). Textile fibre waste bindered with natural hydraulic lime. Composites Part B: Engineering, 94, 26-33. doi:10.1016/j.compositesb.2016.03.013

Echeverria, C. A., Pahlevani, F., Handoko, W., Jiang, C., Doolan, C., & Sahajwalla, V. (2019). Engineered hybrid fibre reinforced composites for sound absorption building applications. Resources, Conservation and Recycling, 143, 1-14. doi:10.1016/j.resconrec.2018.12.014

Leal Filho, W., Ellams, D., Han, S., Tyler, D., Boiten, V. J., Paço, A., … Balogun, A.-L. (2019). A review of the socio-economic advantages of textile recycling. Journal of Cleaner Production, 218, 10-20. doi:10.1016/j.jclepro.2019.01.210

Muñoz, I., Rodríguez, C., Gillet, D., & M. Moerschbacher, B. (2017). Life cycle assessment of chitosan production in India and Europe. The International Journal of Life Cycle Assessment, 23(5), 1151-1160. doi:10.1007/s11367-017-1290-2

Mati-Baouche, N., De Baynast, H., Lebert, A., Sun, S., Lopez-Mingo, C. J. S., Leclaire, P., & Michaud, P. (2014). Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Industrial Crops and Products, 58, 244-250. doi:10.1016/j.indcrop.2014.04.022

El Hage, R., Khalaf, Y., Lacoste, C., Nakhl, M., Lacroix, P., & Bergeret, A. (2018). A flame retarded chitosan binder for insulating miscanthus/recycled textile fibers reinforced biocomposites. Journal of Applied Polymer Science, 136(13), 47306. doi:10.1002/app.47306

Mati-Baouche, N., de Baynast, H., Michaud, P., Dupont, T., & Leclaire, P. (2016). Sound absorption properties of a sunflower composite made from crushed stem particles and from chitosan bio-binder. Applied Acoustics, 111, 179-187. doi:10.1016/j.apacoust.2016.04.021

Abuarra, A., Hashim, R., Bauk, S., Kandaiya, S., & Tousi, E. T. (2014). Fabrication and characterization of gum Arabic bonded Rhizophora spp. particleboards. Materials & Design, 60, 108-115. doi:10.1016/j.matdes.2014.03.032

Elinwa, A. U., Abdulbasir, G., & Abdulkadir, G. (2018). Gum Arabic as an admixture for cement concrete production. Construction and Building Materials, 176, 201-212. doi:10.1016/j.conbuildmat.2018.04.160

Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9

Johnson, D. L., Koplik, J., & Dashen, R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics, 176(-1), 379. doi:10.1017/s0022112087000727

Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824

Patnaik, A., Mvubu, M., Muniyasamy, S., Botha, A., & Anandjiwala, R. D. (2015). Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy and Buildings, 92, 161-169. doi:10.1016/j.enbuild.2015.01.056

Brown, R. J. S. (1980). Connection between formation factor for electrical resistivity and fluid‐solid coupling factor in Biot’s equations for acoustic waves in fluid‐filled porous media. GEOPHYSICS, 45(8), 1269-1275. doi:10.1190/1.1441123

Pfretzschner, J., & Mª. Rodriguez, R. (1999). Acoustic properties of rubber crumbs. Polymer Testing, 18(2), 81-92. doi:10.1016/s0142-9418(98)00009-9

Berryman, J. G. (1980). Confirmation of Biot’s theory. Applied Physics Letters, 37(4), 382-384. doi:10.1063/1.91951

Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9

Rey, R. del, Alba, J., Arenas, J. P., & Ramis, J. (2013). Technical Notes: Evaluation of Two Alternative Procedures for Measuring Airflow Resistance of Sound Absorbing Materials. Archives of Acoustics, 38(4), 547-554. doi:10.2478/aoa-2013-0064

Jerman, M., & Černý, R. (2012). Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials. Energy and Buildings, 53, 39-46. doi:10.1016/j.enbuild.2012.07.002

Jerman, M., Palomar, I., Kočí, V., & Černý, R. (2019). Thermal and hygric properties of biomaterials suitable for interior thermal insulation systems in historical and traditional buildings. Building and Environment, 154, 81-88. doi:10.1016/j.buildenv.2019.03.020

Gustafsson, S. E. (1991). Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Review of Scientific Instruments, 62(3), 797-804. doi:10.1063/1.1142087

Del Rey, R., Berto, L., Alba, J., & Arenas, J. P. (2015). Acoustic characterization of recycled textile materials used as core elements in noise barriers. Noise Control Engineering Journal, 63(5), 439-447. doi:10.3397/1/376339

Piégay, C., Glé, P., Gourdon, E., Gourlay, E., & Marceau, S. (2018). Acoustical model of vegetal wools including two types of fibers. Applied Acoustics, 129, 36-46. doi:10.1016/j.apacoust.2017.06.021

Carosio, F., & Alongi, J. (2018). Flame Retardant Multilayered Coatings on Acrylic Fabrics Prepared by One-Step Deposition of Chitosan/Montmorillonite Complexes. Fibers, 6(2), 36. doi:10.3390/fib6020036

No, H. K., Meyers, S. P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of Chitosan for Improvement of Quality and Shelf Life of Foods: A Review. Journal of Food Science, 72(5), R87-R100. doi:10.1111/j.1750-3841.2007.00383.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem